scholarly journals Occurrence of extended-spectrum beta-lactamaseand AmpC-type cephalosporinase-producing Escherichia coli in mastitic cow’s milk

2021 ◽  
Vol 77 (06) ◽  
pp. 291-294
Author(s):  
HANNA RÓŻAŃSKA ◽  
MARIA KUBAJKA ◽  
MARCIN WEINER

The aim of the study was to evaluate the occurrence of Escherichia coli producing extended-spectrum betalactamases (ESBL and/or AmpC) in the milk of cows with mastitis. A total 2,500 milk samples from mastitic cows were tested in 2014-2018. The investigations included the culture of bacteria on MacConkey agar with cefotaxime, identification with the API Rapid 32 E test, synergy disc test D68C, assessment of antimicrobial resistance by the microdilution method and confirmation of the occurrence of genes encoding ESBL and AmpC. Out of 133 isolates identified as E. coli, 87 were recognized as ESBL producers and 46 as chromosomally encoded cephalosporinase AmpC producers. The blaTEM was predominant in the ESBL producers. All 46 AmpC-positive strains had the blaCMY gene. The results confirmed the occurrence of extended-spectrum betalactamase- producing E. coli in inflammatory secretions from mastitic

2021 ◽  
Vol 5 (2) ◽  
pp. 1198-1207
Author(s):  
Kien Chi Le ◽  
Cuong Quoc Vo ◽  
Xuan Thanh Tran ◽  
Hung Manh Dang ◽  
Huyen Ngoc My Nguyen ◽  
...  

The global prevalence of antimicrobial resistance and Extended-Spectrum and AmpC Beta- Lactamases is continuously widespread among Escherichia coli during recent years, especially in Viet Nam. In Viet Nam, there have been researches on ESBL and AmpC-carrying E. coli inhabiting animal and human. However, studies of antimicrobial resistance in E. coli residing in pets, especially dogs are unavailable. The aim of the study was to investigate the antimicrobial sensitivity testing (AST), the resistance to 3rd cephalosporin and penicillin, also to assess the molecular detection of ESBL and Amp-C-beta -lactamase in E. coli isolates inhabiting the digestive tract of dogs at kennels Dak Lak. By using double disk synergy test (DDST), and ceftazidime-imipenem antagonism test (CIAT) to detect phenotypic characteristic of E. coli strains producing extended-spectrum beta- lactamases (ESBLs) and plasmid-mediated Amp-C-beta -lactamase, and by using multiplex polymerase chain reaction (multiplex PCR) to confirm the presence of ESBL genes (class A): blaCTX-M(1;2;8;9;25), bla TEM, bla SHV , bla OXA and genes encoding AmpC-type beta lactamase (class C): bla MOX-1;2 , bla CMY- (1;2-7;8-11) , blaLAT-(1;4) ,bla DHA-(1;2), bla ACC, bla FOX-(1-5B) ,bla MIR-1 ,bla ACT-1. From of three hundred twelve bacteial strains isolated from sixty-four rectal swabs two hundred sixty-nine E. Coli, isolates accounting for 86%, were identified and isolated, forty-four (16%) and twelve (4%) E. coli isolates encoding with ESBL and Amp-C-beta -lactamases. From molecular diagnosis with regard to phenotype, production of ESBL was shown in thirty-nine (15%) E. coli isolates and Amp-C enzymes in eight (3%) E. coli isolates. The high percentage of E. coli exhibiting antibiotic resistance revealed the accelerated overuse of antibiotics. Result of this study will contribute to the monitoring of epidemiologic resistance.


2010 ◽  
Vol 59 (6) ◽  
pp. 665-671 ◽  
Author(s):  
Chin-Fu Lin ◽  
Shih-Kuang Hsu ◽  
Chao-Hsien Chen ◽  
Jr-Rung Huang ◽  
Hsueh-Hsia Lo

This study was conducted to detect the genes encoding extended-spectrum β-lactamases (ESBLs) and determine the epidemiological relatedness of 69 Escherichia coli and 33 Klebsiella pneumoniae isolates collected from a regional hospital in central Taiwan, mostly from inpatients (E. coli 87.0 %; K. pneumoniae 88.0 %). The phenotypes of these isolates were examined according to the combination disc method recommended by the Clinical and Laboratory Standards Institute. Most of the ESBL-producing E. coli and K. pneumoniae isolates (98.6 % and 97 %, respectively) could be detected using cefotaxime discs with and without clavulanate. Genotyping was performed by PCR with type-specific primers. CTX-M-14 type (53.6 %) was the most prevalent ESBL among E. coli isolates while SHV type (57.6 %) was the most dominant among K. pneumoniae isolates. Six E. coli and three K. pneumoniae isolates did not carry genes encoding ESBLs of types TEM, SHV, CTX-M-3, CTX-M-14, CMY-2 and DHA-1. The co-existence of two or more kinds of ESBL in a single isolate was common, occurring in 40.6 % and 72.7 % of E. coli and K. pneumoniae isolates, respectively. PFGE analysis revealed that ESBL producers isolated in this setting were genetically divergent.


2021 ◽  
Vol 12 ◽  
Author(s):  
Abebe Aseffa Negeri ◽  
Hassen Mamo ◽  
Jyoti M. Gurung ◽  
A. K. M. Firoj Mahmud ◽  
Maria Fällman ◽  
...  

The treatment of invasive Escherichia coli infections is a challenge because of the emergence and rapid spread of multidrug resistant strains. Particular problems are those strains that produce extended spectrum β-lactamases (ESBL’s). Although the global characterization of these enzymes is advanced, knowledge of their molecular basis among clinical E. coli isolates in Ethiopia is extremely limited. This study intends to address this knowledge gap. The study combines antimicrobial resistance profiling and molecular epidemiology of ESBL genes among 204 E. coli clinical isolates collected from patient urine, blood, and pus at four geographically distinct health facilities in Ethiopia. All isolates exhibited multidrug resistance, with extensive resistance to ampicillin and first to fourth line generation cephalosporins and sulfamethoxazole-trimethoprim and ciprofloxacin. Extended spectrum β-lactamase genes were detected in 189 strains, and all but one were positive for CTX-Ms β-lactamases. Genes encoding for the group-1 CTX-Ms enzymes were most prolific, and CTX-M-15 was the most common ESBL identified. Group-9 CTX-Ms including CTX-M-14 and CTX-27 were detected only in 12 isolates and SHV ESBL types were identified in just 8 isolates. Bacterial typing revealed a high amount of strains associated with the B2 phylogenetic group. Crucially, the international high risk clones ST131 and ST410 were among the sequence types identified. This first time study revealed a high prevalence of CTX-M type ESBL’s circulating among E. coli clinical isolates in Ethiopia. Critically, they are associated with multidrug resistance phenotypes and high-risk clones first characterized in other parts of the world.


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 406
Author(s):  
Zuhura I. Kimera ◽  
Fauster X. Mgaya ◽  
Gerald Misinzo ◽  
Stephen E. Mshana ◽  
Nyambura Moremi ◽  
...  

We determined the phenotypic profile of multidrug-resistant (MDR) Escherichia coli isolated from 698 samples (390 and 308 from poultry and domestic pigs, respectively). In total, 562 Enterobacteria were isolated. About 80.5% of the isolates were E. coli. Occurrence of E. coli was significantly higher among domestic pigs (73.1%) than in poultry (60.5%) (p = 0.000). In both poultry and domestic pigs, E. coli isolates were highly resistant to tetracycline (63.5%), nalidixic acid (53.7%), ampicillin (52.3%), and trimethoprim/sulfamethoxazole (50.9%). About 51.6%, 65.3%, and 53.7% of E. coli were MDR, extended-spectrum beta lactamase-producing enterobacteriaceae (ESBL-PE), and quinolone-resistant, respectively. A total of 68% of the extended-spectrum beta lactamase (ESBL) producers were also resistant to quinolones. For all tested antibiotics, resistance was significantly higher in ESBL-producing and quinolone-resistant isolates than the non-ESBL producers and non-quinolone-resistant E. coli. Eight isolates were resistant to eight classes of antimicrobials. We compared phenotypic with genotypic results of 20 MDR E. coli isolates, ESBL producers, and quinolone-resistant strains and found 80% harbored blaCTX-M, 15% aac(6)-lb-cr, 10% qnrB, and 5% qepA. None harbored TEM, SHV, qnrA, qnrS, qnrC, or qnrD. The observed pattern and level of resistance render this portfolio of antibiotics ineffective for their intended use.


2020 ◽  
Vol 8 (6) ◽  
pp. 885 ◽  
Author(s):  
Emelia H. Adator ◽  
Claudia Narvaez-Bravo ◽  
Rahat Zaheer ◽  
Shaun R. Cook ◽  
Lisa Tymensen ◽  
...  

This study aimed to compare antimicrobial resistance (AMR) in extended-spectrum cephalosporin-resistant and generic Escherichia coli from a One Health continuum of the beef production system in Alberta, Canada. A total of 705 extended-spectrum cephalosporin-resistant E. coli (ESCr) were obtained from: cattle feces (CFeces, n = 382), catch basins (CBasins, n = 137), surrounding streams (SStreams, n = 59), beef processing plants (BProcessing, n = 4), municipal sewage (MSewage; n = 98) and human clinical specimens (CHumans, n = 25). Generic isolates (663) included: CFeces (n = 142), CBasins (n = 185), SStreams (n = 81), BProcessing (n = 159) and MSewage (n = 96). All isolates were screened for antimicrobial susceptibility to 9 antimicrobials and two clavulanic acid combinations. In ESCr, oxytetracycline (87.7%), ampicillin (84.4%) and streptomycin (73.8%) resistance phenotypes were the most common, with source influencing AMR prevalence (p < 0.001). In generic E. coli, oxytetracycline (51.1%), streptomycin (22.6%), ampicillin (22.5%) and sulfisoxazole (14.3%) resistance were most common. Overall, 88.8% of ESCr, and 26.7% of generic isolates exhibited multi-drug resistance (MDR). MDR in ESCr was high from all sources: CFeces (97.1%), MSewage (96.9%), CHumans (96%), BProcessing (100%), CBasins (70.5%) and SStreams (61.4%). MDR in generic E. coli was lower with CFeces (45.1%), CBasins (34.6%), SStreams (23.5%), MSewage (13.6%) and BProcessing (10.7%). ESBL phenotypes were confirmed in 24.7% (n = 174) ESCr and 0.6% of generic E. coli. Prevalence of bla genes in ESCr were blaCTXM (30.1%), blaCTXM-1 (21.6%), blaTEM (20%), blaCTXM-9 (7.9%), blaOXA (3.0%), blaCTXM-2 (6.4%), blaSHV (1.4%) and AmpC β-lactamase blaCMY (81.3%). The lower AMR in ESCr from SStreams and BProcessing and higher AMR in CHumans and CFeces likely reflects antimicrobial use in these environments. Although MDR levels were higher in ESCr as compared to generic E. coli, AMR to the same antimicrobials ranked high in both ESCr and generic E. coli sub-populations. This suggests that both sub-populations reflect similar AMR trends and are equally useful for AMR surveillance. Considering that MDR ESCr MSewage isolates were obtained without enrichment, while those from CFeces were obtained with enrichment, MSewage may serve as a hot spot for MDR emergence and dissemination.


2021 ◽  
Vol 6 (2) ◽  
pp. 105
Author(s):  
Regina Ama Banu ◽  
Jorge Matheu Alvarez ◽  
Anthony J. Reid ◽  
Wendemagegn Enbiale ◽  
Appiah-Korang Labi ◽  
...  

Infections by Extended-Spectrum Beta-Lactamase producing Escherichia coli (ESBL-Ec) are on the increase in Ghana, but the level of environmental contamination with this organism, which may contribute to growing Antimicrobial Resistance (AMR), is unknown. Using the WHO OneHealth Tricycle Protocol, we investigated the contamination of E. coli (Ec) and ESBL-Ec in two rivers in Ghana (Odaw in Accra and Okurudu in Kasoa) that receive effluents from human and animal wastewater hotspots over a 12-month period. Concentrations of Ec, ESBL-Ec and percent ESBL-Ec/Ec were determined per 100 mL sample. Of 96 samples, 94 (98%) were positive for ESBL-Ec. concentrations per 100 mL (MCs100) of ESBL-Ec and %ESBL-Ec from both rivers were 4.2 × 104 (IQR, 3.1 × 103–2.3 × 105) and 2.79 (IQR, 0.96–6.03), respectively. MCs100 were significantly lower in upstream waters: 1.8 × 104 (IQR, 9.0 × 103–3.9 × 104) as compared to downstream waters: 1.9 × 106 (IQR, 3.7 × 105–5.4 × 106). Both human and animal wastewater effluents contributed to the increased contamination downstream. This study revealed high levels of ESBL-Ec in rivers flowing through two cities in Ghana. There is a need to manage the sources of contamination as they may contribute to the acquisition and spread of ESBL-Ec in humans and animals, thereby contributing to AMR.


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


Author(s):  
Nahla Omer Eltai ◽  
Hadi M. Yassine ◽  
Sara H. Al-Hadidi ◽  
Tahra ElObied ◽  
Asmaa A. Al Thani ◽  
...  

The dissemination of antimicrobial resistance (AMR) bacteria has been associated with the inappropriate use of antibiotics in both humans and animals and with the consumption of food contaminated with resistant bacteria. In particular, the use of antibiotics as prophylactic and growth promotion purposes in food-producing animals has rendered many of the antibiotics ineffective. The increased global prevalence of AMR poses a significant threat to the safety of the world’s food supply. Objectives: This study aims at determining the prevalence of antibiotic-resistant Escherichia coli (E. coli) isolated from local and imported retail chicken meat in Qatar. Methodology: A total of 270 whole chicken carcasses were obtained from three different hypermarket stores in Qatar. A total of 216 E. coli were isolated and subjected to antibiotic susceptibility testing against 18 relevant antibiotics using disc diffusion and micro- dilution methods. Furthermore, extended-spectrum β-lactamase (ESBL) production was determined via a double-disc synergetic test. Isolates harboring colistin resistance were confirmed using multiplex-PCR and DNA sequencing. Results: Nearly 89% (192/216) of the isolates were resistant to at least one antibiotics. In general, isolates showed relatively higher resistance to sulfamethoxazole (62%), tetracycline (59.7%), ampicillin and trimethoprim (52.3%), ciprofloxacin (47.7%), cephalothin, and colistin (31.9%). On the other hand, less resistance was recorded against amoxicillin/clavulanic acid (6%), ceftriaxone (5.1%), nitrofurantoin (4.2%) and piperacillin/tazobactam (4.2%), cefepime (2.3%), meropenem (1.4%), ertapenem (0.9%), and amikacin (0.9%). Nine isolates (4.2%) were ESBL producers. Furthermore, 63.4% were multidrug-resistant (MDR). The percentage of MDR, ESBL producers, and colistin-resistant isolates was significantly higher among local isolates compared to imported chicken samples. Conclusion: We reported a remarkably high percentage of the antibiotic-resistant E. coli in chicken meat sold at retail in Qatar. The high percentage of MDR and colistin isolates is troublesome to the food safety of raw chicken meat and the potential of antibiotic resistance spread to public health. Our findings support the need for the implementation of one health approach to address the spread of antimicrobial resistance and the need for a collaborative solution.


2015 ◽  
Vol 78 (8) ◽  
pp. 1442-1450 ◽  
Author(s):  
KANJANA CHANGKAEW ◽  
APIRADEE INTARAPUK ◽  
FUANGFA UTRARACHKIJ ◽  
CHIE NAKAJIMA ◽  
ORASA SUTHIENKUL ◽  
...  

Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)–producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.


2020 ◽  
Vol 8 (10) ◽  
pp. 1626
Author(s):  
Mahfouz Nasser ◽  
Snehal Palwe ◽  
Ram Naresh Bhargava ◽  
Marc G. J. Feuilloley ◽  
Arun S. Kharat

The production of diverse and extended spectrum β-lactamases among Escherichia coli and ESKAPE pathogens is a growing threat to clinicians and public health. We aim to provide a comprehensive analysis of evolving trends of antimicrobial resistance and β-lactamases among E. coli and ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acine to bacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) in the Arabian region. A systematic review was conducted in Medline PubMed on papers published between January 2000 and February 2020 on countries in the Arab region showing different antibiotic resistance among E. coli and ESKAPE pathogens. A total of n = 119,144 clinical isolates were evaluated for antimicrobial resistance in 19 Arab countries. Among these clinical isolates, 74,039 belonged to E. coli and ESKAPE pathogen. Distribution of antibiotic resistance among E. coli and ESKAPE pathogens indicated that E. coli (n = 32,038) was the predominant pathogen followed by K. pneumoniae (n = 17,128), P. aeruginosa (n = 11,074), methicillin-resistant S. aureus (MRSA, n = 4370), A. baumannii (n = 3485) and Enterobacter spp. (n = 1574). There were no reports demonstrating Enterococcus faecium producing β-lactamase. Analyses revealed 19 out of 22 countries reported occurrence of ESBL (Extended-Spectrum β-Lactamase) producing E. coli and ESKAPE pathogens. The present study showed significantly increased resistance rates to various antimicrobial agents over the last 20 years; for instance, cephalosporin resistance increased from 37 to 89.5%, fluoroquinolones from 46.8 to 70.3%, aminoglycosides from 40.2 to 64.4%, mono-bactams from 30.6 to 73.6% and carbapenems from 30.5 to 64.4%. An average of 36.9% of the total isolates were reported to have ESBL phenotype during 2000 to 2020. Molecular analyses showed that among ESBLs and Class A and Class D β-lactamases, blaCTX-M and blaOXA have higher prevalence rates of 57% and 52.7%, respectively. Among Class B β-lactamases, few incidences of blaVIM 27.7% and blaNDM 26.3% were encountered in the Arab region. Conclusion: This review highlights a significant increase in resistance to various classes of antibiotics, including cephalosporins, β-lactam and β-lactamase inhibitor combinations, carbapenems, aminoglycosides and quinolones among E. coli and ESKAPE pathogens in the Arab region.


Sign in / Sign up

Export Citation Format

Share Document