scholarly journals Deciphering the Antibacterial Role of Peptide From Bacillus subtilis subsp. spizizenii Ba49 Against Staphylococcus aureus

2021 ◽  
Vol 12 ◽  
Author(s):  
Ramita Taggar ◽  
Sanpreet Singh ◽  
Vijayender Bhalla ◽  
Mani Shankar Bhattacharyya ◽  
Debendra K. Sahoo

An increase in antibiotic resistance has led to escalating the need for the development of alternate therapy. Antimicrobial peptides (AMPs) are at the forefront of replacing conventional antibiotics, showing slower development of drug resistance, antibiofilm activity, and the ability to modulate the host immune response. The ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) pathogens that jeopardize most conventional antibiotics are known to be involved in severe respiratory tract, bloodstream, urinary tract, soft tissue, and skin infections. Among them, S. aureus is an insidious microbe and developed resistance against conventional antibiotics. In the present study, an AMP (named as peptide-Ba49) isolated from Bacillus subtilis subsp. spizizenii strain from Allium cepa (the common onion) exhibited strong antibacterial efficacy against S. aureus ATCC 25923. The mode of action of this peptide-Ba49 on S. aureus was deciphered through various sensitive probes, i.e., DiSC3 (5) and H2DCFDA, suggesting the peptide-Ba49 to be acting upon through change in membrane potential and by triggering the production of reactive oxygen species (ROS). This induced disruption of the cell membrane was further supported by morphological studies using scanning electron microscopy (SEM). Investigations on a possible post-antibiotic effect (PAE) of peptide-Ba49 showed prolonged PAE against S. aureus. Furthermore, the peptide-Ba49 prevented the formation of S. aureus biofilm at low concentration and showed its potential to degrade the mature biofilm of S. aureus. The peptide-Ba49 also exhibited intracellular killing potential against S. aureus ATCC 25923 in the macrophage cells, and moreover, peptide-Ba49 was found to bolster the fibroblast cell migration in the scratch assay at low concentration, exhibiting a wound healing efficacy of this peptide. These studies demonstrated that peptide-Ba49 isolated from the strain B. subtilis subsp. spizizenii could be a therapeutic candidate to combat the pathogenic S. aureus infections.

Author(s):  
Bukola Catherine Akin-Osanaiye ◽  
Oluwatobi Olaife Arowolo ◽  
Ifeyomi Wilfred Olobayotan

Study on the isolation and identifications of bacteria associated with the root of legumes were conducted using Spread Plate Technique. The frequencies of occurrences of the bacteria isolate showed that a total of sixteen (16) bacteria belonging to three genera and four species were isolated from the leguminous plants. Maximum number recovered from sample collected from the root of groundnut was seven (7) followed by Soya bean with five (5) while Pea recorded the least number of four (4). Role of Bacillus subtilis in the soil around the leguminous plant was the highest, which covered about 37.50% of the total isolates. Other bacteria that were also isolated from the soil around the legumes root include Bacillus cereus and Staphylococcus aureus which covered about four (4) each representing 25.0% of the total isolates while Pseudomonas aeruginosa recorded the least value of 12.50%. The bacteria isolated from the root of the legumes were not significantly different (P < 0.05). The bacteria have Nitrogen-fixing potential, having isolated from three leguminous plants which include Soya bean, Groundnut and Pea.


2012 ◽  
Vol 56 (8) ◽  
pp. 4360-4364 ◽  
Author(s):  
Vandana Singh ◽  
Vaneet Arora ◽  
M. Jahangir Alam ◽  
Kevin W. Garey

ABSTRACTStaphylococcus aureusandPseudomonas aeruginosaare common nosocomial pathogens responsible for biofilm-associated infections. Proton pump inhibitors (PPI), such as esomeprazole, may have novel antimicrobial properties. The objective of this study was to assess whether esomeprazole prevents sessile bacterial growth and biofilm formation and whether it may have synergistic killing effects with standard antibiotics. The antibiofilm activity of esomeprazole at 0.25 mM was tested against two strains each ofS. aureusandP. aeruginosa. Bacterial biofilms were prepared using a commercially available 96-peg-plate Calgary biofilm device. Sessile bacterial CFU counts and biomass were assessed during 72 hours of esomeprazole exposure. The killing activities after an additional 24 hours of vancomycin (againstS. aureus) and meropenem (againstP. aeruginosa) treatment with or without preexposure to esomeprazole were also assessed by CFU and biomass analyses.P. aeruginosaandS. aureusstrains exposed to esomeprazole displayed decreased sessile bacterial growth and biomass (P< 0.001, each parameter). After 72 h of exposure, there was a 1-log10decrease in the CFU/ml of esomeprazole-exposedP. aeruginosaandS. aureusstrains compared to controls (P< 0.001). After 72 h of exposure, measured absorbance was 100% greater inP. aeruginosacontrol strains than in esomeprazole-exposed strains (P< 0.001). Increased killing and decreased biomass were observed for esomeprazole-treated bacteria compared to untreated controls exposed to conventional antibiotics (P< 0.001, each parameter). Reduced biofilm growth after 24 h was visibly apparent by light micrographs forP. aeruginosaandS. aureusisolates exposed to esomeprazole compared to untreated controls. In conclusion, esomeprazole demonstrated an antibiofilm effect against biofilm-producingS. aureusandP. aeruginosa.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1159
Author(s):  
Muhammad Yasir ◽  
Debarun Dutta ◽  
Mark D. P. Willcox

Staphylococcus aureus can develop resistance by mutation, transfection or biofilm formation. Resistance was induced in S. aureus by growth in sub-inhibitory concentrations of ciprofloxacin for 30 days. The ability of the antimicrobials to disrupt biofilms was determined using crystal violet and live/dead staining. Effects on the cell membranes of biofilm cells were evaluated by measuring release of dyes and ATP, and nucleic acids. None of the strains developed resistance to AMPs while only S. aureus ATCC 25923 developed resistance (128 times) to ciprofloxacin after 30 passages. Only peptides reduced biofilms of ciprofloxacin-resistant cells. The antibiofilm effect of melimine with ciprofloxacin was more (27%) than with melimine alone at 1X MIC (p < 0.001). Similarly, at 1X MIC the combination of Mel4 and ciprofloxacin produced more (48%) biofilm disruption than Mel4 alone (p < 0.001). Combinations of either of the peptides with ciprofloxacin at 2X MIC released ≥ 66 nM ATP, more than either peptide alone (p ≤ 0.005). At 2X MIC, only melimine in combination with ciprofloxacin released DNA/RNA which was three times more than that released by melimine alone (p = 0.043). These results suggest the potential use of melimine and Mel4 with conventional antibiotics for the treatment of S. aureus biofilms.


Author(s):  
Muhammad Yasir ◽  
Debarun Dutta ◽  
Mark Duncan Perry Willcox

Staphylococcus aureus can develop resistance by mutation, tranfection or biofilm formation. Resistance was induced in S. aureus by growth in sub-inhibitory concentrations of ciprofloxacin for 30 days. The ability of the antimicrobials to disrupt biofilms was determined using crystal violet and live/dead staining. Effects on the cell membranes of biofilm cells was evaluated by measuring release of dyes and ATP and nucleic acids. S. aureus did not develop resistance to the AMPs but resistance increased to ciprofloxacin by 128 times after 30 passages. Only peptides reduced biofilms of ciprofloxacin resistant cells. The antibiofilm effect of melimine with ciprofloxacin was more (27%) than with melimine alone at 1X MIC (p &lt; 0.001). Similarly, at 1X MIC the combination of Mel4 and ciprofloxacin produced more (48%) biofilm disruption than Mel4 alone (p &lt; 0.001). Combinations of either of the peptides with ciprofloxacin at 2X MIC released  66 nM ATP, more than either peptide alone (p  0.005). At 2X MIC, only melimine in combination with ciprofloxacin released DNA/RNA which was 3 times more than released by melimine alone (p = 0.043). These results suggest the potential use of melimine and Mel4 with conventional antibiotics for the treatments of S. aureus biofilms.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Fan Zhang ◽  
Bowei Wang ◽  
Shiluan Liu ◽  
Yuhui Chen ◽  
Yihuang Lin ◽  
...  

AbstractAs treatment of Staphylococcus aureus (S. aureus) osteomyelitis is often hindered by the development of antibiotic tolerance, novel antibacterial therapeutics are required. Here we found that the cell-free supernatant of Bacillus subtilis (B. subtilis CFS) killed planktonic and biofilm S. aureus, and increased S. aureus susceptibility to penicillin and gentamicin as well. Further study showed that B. subtilis CFS suppressed the expression of the genes involved in adhesive molecules (Cna and ClfA), virulence factor Hla, quorum sensing (argA, argB and RNAIII) and biofilm formation (Ica and sarA) in S. aureus. Additionally, our data showed that B. subtilis CFS changed the membrane components and increased membrane permeabilization of S. aureus. Finally, we demonstrated that B. subtilis CFS increased considerably the susceptibility of S. aureus to penicillin and effectively reduced S. aureus burdens in a mouse model of implant-associated osteomyelitis. These findings support that B. subtilis CFS may be a potential resistance-modifying agent for β-lactam antibiotics against S. aureus.


2021 ◽  
Author(s):  
Fan Zhang ◽  
Bowei Wang ◽  
Shiluan Liu ◽  
Yihuang Lin ◽  
Zixian Liu ◽  
...  

Abstract As treatment of Staphylococcus aureus osteomyelitis is often hindered by the development of antibiotic tolerance, novel antibacterial therapeutics are required. Here we found that the cell-free supernatant of Bacillus subtilis (B. subtilis CFS) killed planktonic and biofilm S. aureus, and increased S. aureus susceptibility to penicillin and gentamicin as well. Further study showed that B. subtilis CFS suppressed the expression of the genes involved in adhesive molecules (Cna and ClfA), virulence factor Hla, quorum sensing (argA, argB and RNAIII) and biofilm formation (Ica and sarA) in S. aureus. Additionally, our data showed that B. subtilis CFS changed the membrane components and increased membrane permeabilization of S. aureus. Finally, we demonstrated that B. subtilis CFS increased considerably the susceptibility of S. aureus to penicillin and effectively reduced S. aureus burdens in a mouse model of implant-associated osteomyelitis. These findings support that B. subtilis CFS may be a potential resistance-modifying agent against S. aureus osteomyelitis.


2018 ◽  
Author(s):  
Robert S. Brzozowski ◽  
Gianni Graham ◽  
A. Maxwell Burroughs ◽  
Mirella Huber ◽  
Merryck Walker ◽  
...  

ABSTRACTBacteria adapt to different environments by regulating cell division and several conditions that modulate cell division have been documented. Understanding how bacteria transduce environmental signals to control cell division is critical to comprehend the global network of cell division regulation. In this article we describe a role forBacillus subtilisYpsA, an uncharacterized protein of the SLOG superfamily of nucleotide and ligand-binding proteins, in cell division. We observed that YpsA provides protection against oxidative stress as cells lackingypsAshow increased susceptibility to hydrogen peroxide treatment. We found that increased expression ofypsAleads to cell division inhibition due to defective assembly of FtsZ, the tubulin-like essential protein that marks the sites of cell division. We showed that cell division inhibition by YpsA is linked to glucose availability. We generated YpsA mutants that are no longer able to inhibit cell division. Finally, we show that the role of YpsA is possibly conserved in Firmicutes, as overproduction of YpsA inStaphylococcus aureusalso impairs cell division. Therefore, we proposeypsAto be renamed asiodAforinhibitorofdivision.IMPORTANCEAlthough key players of cell division in bacteria have been largely characterized, the factors that regulate these division proteins are still being discovered and evidence for the presence of yet-to-be discovered factors has been accumulating. How bacteria sense the availability of nutrients and how that information is used to regulate cell division positively or negatively is less well-understood even though some examples exist in the literature. We discovered that a protein of hitherto unknown function belonging to the SLOG superfamily of nucleotide/ligand-binding proteins, YpsA, influences cell division inBacillus subtilisby integrating metabolic status such as the availability of glucose. We showed that YpsA is important for oxidative stress response inB. subtilis. Furthermore, we provide evidence that cell division inhibition function of YpsA is also conserved in another FirmicuteStaphylococcus aureus. This first report on the role of YpsA (IodA) brings us a step closer in understanding the complete tool set that bacteria have at their disposal to regulate cell division precisely to adapt to varying environmental conditions.


Author(s):  
Grace C.H. Yang

The size and organization of collagen fibrils in the extracellular matrix is an important determinant of tissue structure and function. The synthesis and deposition of collagen involves multiple steps which begin within the cell and continue in the extracellular space. High-voltage electron microscopic studies of the chick embryo cornea and tendon suggested that the extracellular space is compartmentalized by the fibroblasts for the regulation of collagen fibril, bundle, and tissue specific macroaggregate formation. The purpose of this study is to gather direct evidence regarding the association of the fibroblast cell surface with newly formed collagen fibrils, and to define the role of the fibroblast in the control and the precise positioning of collagen fibrils, bundles, and macroaggregates during chick tendon development.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Hussein A Kadhum ◽  
Thualfakar H Hasan2

The study involved the selection of two isolates from Bacillus subtilis to investigate their inhibitory activity against some bacterial pathogens. B sub-bacteria were found to have a broad spectrum against test bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. They were about 23-30 mm and less against Klebsiella sp. The sensitivity of some antibodies was tested on the test samples. The results showed that the inhibitory ability of bacterial growth in the test samples using B. subtilis extract was more effective than the antibiotics used.


Sign in / Sign up

Export Citation Format

Share Document