scholarly journals Multidrug Resistant Acinetobacter baumannii Biofilms: Evaluation of Phenotypic–Genotypic Association and Susceptibility to Cinnamic and Gallic Acids

2021 ◽  
Vol 12 ◽  
Author(s):  
Mahmoud M. Sherif ◽  
Walid F. Elkhatib ◽  
Wafaa S. Khalaf ◽  
Nooran S. Elleboudy ◽  
Neveen A. Abdelaziz

Acinetobacter baumannii armed with multidrug resistance (MDR) and biofilm-forming ability is increasingly recognized as an alarming pathogen. A deeper comprehension of the correlation between these two armories is required in circumventing its infections. This study examined the biofilm-forming ability of the isolates by crystal violet staining and the antibiotic susceptibility by broth microdilution method. The genetic basis of the MDR and biofilm-forming phenotypes was screened by polymerase chain reaction. The antimicrobial activities of cinnamic and gallic acids against planktonic cells and biofilms of A. baumannii were investigated, and the findings were confirmed with scanning electron microscopy (SEM). Among 90 A. baumannii isolates, 69 (76.6%) were MDR, and all were biofilm formers; they were classified into weak (12.2%), moderate (53.3%), and strong (34.5%) biofilm formers. Our results underlined a significant association between MDR and enhanced biofilm formation. Genotypically, the presence of blaVIM and blaOXA–23 genes along with biofilm-related genes (ompA, bap, and csuE) was statistically associated with the biofilm-forming abilities. Impressively, both gallic and cinnamic acids could significantly reduce the MDR A. baumannii biofilms with variable degrees dependent on the phenotype–genotype characteristics of the tested isolates. The current findings may possess future therapeutic impact through augmenting antimicrobial arsenal against life-threatening infections with MDR A. baumannii biofilms.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yaw Adjei Anane ◽  
Teke Apalata ◽  
Sandeep Vasaikar ◽  
Grace Emily Okuthe ◽  
Sandile Songca

Introduction. Carbapenem-resistant Acinetobacter baumannii has been responsible for an increasing number of hospital-acquired infections globally. The study investigated the prevalence of carbapenemase-encoding genes in clinical multidrug-resistant A. baumannii strains. Materials and Methods. A total of 100 nonduplicate multidrug-resistant A. baumannii strains were cultured from clinical samples obtained from healthcare facilities in the O. R. Tambo district. The strains were confirmed by detecting the intrinsic blaOXA-51-like gene. Antimicrobial susceptibility testing was performed by VITEK® 2 and autoSCAN-4 systems. The MIC of imipenem and meropenem was rechecked by E-test. Colistin MIC was confirmed by the broth microdilution method. Real-time PCR was performed to investigate the presence of carbapenemase-encoding genes. Results. Most strains showed high resistance rates (>80%) to the antibiotics tested. Resistance to amikacin, tetracycline, and tigecycline were 50%, 64%, and 48%, respectively. All strains were fully susceptible to colistin. The blaOXA-51-like was detected in all strains whilst blaOXA-23-like, blaOXA-58-like, blaOXA-24-like, blaIMP-1, blaVIM, and blaNDM-1 were found in 70%, 8%, 5%, 4%, 3%, and 2% of strains, respectively. None of the tested strains harboured the genes blaSIM and blaAmpC. The coexistence of blaOXA-23-like, and blaIMP-1 or blaOXA-58-like was detected in 1% and 2% strains, respectively. A distinct feature of our findings was the coharbouring of the genes blaOXA-23-like, blaOXA-58-like, and blaIMP-1 in 2% strains, and this is the first report in the Eastern Cape Province, South Africa. The intI1 was carried in 80% of tested strains whilst ISAba1/blaOXA-51-like and ISAba1/blaOXA-23-like were detected in 15% and 40% of the strains, respectively. The detection of blaOXA-23-like, ISAba1/blaOXA-51-like, ISAba1/blaOXA-23-like, and blaOXA-23-like, blaOXA-58-like, and blaIMP-1 carbapenemases in strains had a significant effect on both imipenem and meropenem MICs. Conclusions. Results showed a high level of oxacillinases producing A. baumannii circulating in our study setting, highlighting the need for local molecular surveillance to inform appropriate management and prevention strategies.


Author(s):  
Po-Yu Liu ◽  
Ling-Ling Weng ◽  
Shu-Ying Tseng ◽  
Chou-Chen Huang ◽  
Ching-Chang Cheng ◽  
...  

This study included fifty-eight isolates of P. aeruginosa from the oral cavity of snakes that were recruited from clinical cases, captive and wild snakes. The minimum inhibitory concentrations (MICs) for the determination of susceptibility were identified by the broth microdilution method. Polymerase chain reaction (PCR) was employed to detect β-lactamases genes. With regard to antipseudomonal antibiotics, the lowest nonsusceptible rates were in aztreonam (15%), piperacillin/tazobactam (12%), and amikacin (9%). The nonsusceptible rates were high in gentamicin (33%) and colistin (55%). Meanwhile, blaTEM presented in 100% of isolates where blaAmpC, blaOXA-1, and blaOXA-10 came at 94.8%, 89.7%, and 27.6%, respectively. Emergence of multidrug resistant (MDR) strains and colistin-resistant strains highlights the potential breach of public health as P. aeruginosa could be transmitted through either direct contact or indirect dissemination through the environment. This study reports that the highly resistant P. aeruginosa from snakes’ oral cavity were discovered for the very first time in Taiwan.


2017 ◽  
Vol 69 (3) ◽  
pp. 561-568
Author(s):  
Ivana Charousová ◽  
Juraj Medo ◽  
Soňa Javoreková

Broad spectrum antimicrobial agents are urgently needed to fight frequently occurring multidrug-resistant pathogens. Myxobacteria have been regarded as ?microbe factories? for active secondary metabolites, and therefore, this study was performed to isolate two bacteriolytic genera of myxobacteria, Myxococcus sp. and Corallococcus sp., from 10 soil/sand samples using two conventional methods followed by purification with the aim of determining the antimicrobial activity of methanol extracts against 11 test microorganisms (four Gram-positive, four Gram-negative, two yeasts and one fungus). Out of thirty-nine directly observed strains, 23 were purified and analyzed for antimicrobial activities. Based on the broth microdilution method, a total of 19 crude extracts showed antimicrobial activity. The range of inhibited wells was more important in the case of anti-Gram-positive-bacterial activity in comparison with the anti-Gram-negative-bacterial and antifungal activity. In light of the established degree and range of antimicrobial activity, two of the most active isolates (BNEM1 and SFEC2) were selected for further characterization. Morphological parameters and a sequence similarity search by BLAST revealed that they showed 99% sequence similarity to Myxococcus xanthus ? BNEM1 (accession no. KX669224) and Corallococcus coralloides - SFEC2 (accession no. KX669225). As these isolates had antimicrobial activity, they could be considered for use in the development of antibiotics for pharmaceutical use.


Vaccines ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 96
Author(s):  
Stephen J. Dollery ◽  
Daniel V. Zurawski ◽  
Elena K. Gaidamakova ◽  
Vera Y. Matrosova ◽  
John K. Tobin ◽  
...  

Acinetobacter baumannii is a bacterial pathogen that is often multidrug-resistant (MDR) and causes a range of life-threatening illnesses, including pneumonia, septicemia, and wound infections. Some antibiotic treatments can reduce mortality if dosed early enough before an infection progresses, but there are few other treatment options when it comes to MDR-infection. Although several prophylactic strategies have been assessed, no vaccine candidates have advanced to clinical trials or have been approved. Herein, we rapidly produced protective whole-cell immunogens from planktonic and biofilm-like cultures of A. baumannii, strain AB5075 grown using a variety of methods. After selecting a panel of five cultures based on distinct protein profiles, replicative activity was extinguished by exposure to 10 kGy gamma radiation in the presence of a Deinococcus antioxidant complex composed of manganous (Mn2+) ions, a decapeptide, and orthophosphate. Mn2+ antioxidants prevent hydroxylation and carbonylation of irradiated proteins, but do not protect nucleic acids, yielding replication-deficient immunogenic A. baumannii vaccine candidates. Mice were immunized and boosted twice with 1.0 × 107 irradiated bacterial cells and then challenged intranasally with AB5075 using two mouse models. Planktonic cultures grown for 16 h in rich media and biofilm cultures grown in static cultures underneath minimal (M9) media stimulated immunity that led to 80–100% protection.


2019 ◽  
Vol 6 (Supplement_2) ◽  
pp. S254-S254
Author(s):  
Min Ja Kim ◽  
You Seung Chung ◽  
Hojin Lee ◽  
Jin Woong Suh ◽  
Yoojung Cheong ◽  
...  

Abstract Background Chlorhexidine digluconate (CHG), the most widely used antiseptic, has recently been applied to patient washing to decolonize the multidrug-resistant organisms (MDROs), but there are little data on susceptibilities of MDROs to CHG. The purpose of this study was to evaluate CHG resistance among MDROs before and after the intervention of daily CHG bathing in adult intensive care units (ICUs). Methods The intervention of daily body washing with 2% CHG cloths were taken in adult patients the medical or surgical ICU of 23-bed by a crossover manner for 6 months (MICU, July to December 2017; SICU, January to June 2018) in a 1,050-bed, university hospital in the Republic of Korea. Available MDRO isolates were randomly selected from clinical cultures of ICU patients within 6 months before, during and after the intervention, including MRSA, MR-CoNS, VRE, Carbapenem-resistant Pseudomonas aeruginosa (CR-PA), CR-Acinetobacter baumannii (CR-AB). Minimum inhibitory concentrations (MICs) were determined using the broth microdilution method set by the Clinical Laboratory Standards Institute. Determination of the minimum bactericidal concentrations (MBCs) was performed by subculturing 10 µL from each well without visible microbial growth. Cumulative amounts of CHG used in both ICUs was estimated across the study period from January 2008 to June 2018. Results The cumulative CHG consumption from both ICUs increased sharply from 27,503 g to 29,556 g after one-year intervention. The ranges of MICs and MBCs of CHG among MDRO clinical isolates selected by a 6-month phase are summarized in Table 1. Particularly, CR-PA and CR-AB isolates revealed four to eight times higher MICs and MBCs compared with the majority of Gram-positives excepting some VRE isolates. On the other hand, neither MICs and MBCs ranges of CHG from the MDRO isolates nor the monthly incidence of the MDROs from both ICUs were significantly increased before and after the intervention of daily CHG bathing. Conclusion This study indicates that some Gram-negative MDRO isolates with higher MICs and MBCs of CHG might be from longstanding exposure to CHG or efflux pumps. Although 2% daily CHG bathing uses over 1,000 times higher concentrations than the lethal concentration, it might be needed to monitor CHG resistance among MDROs. Disclosures All authors: No reported disclosures.


2013 ◽  
Vol 8 (9) ◽  
pp. 1934578X1300800 ◽  
Author(s):  
Dragoljub L. Miladinović ◽  
Budimir S. Ilić ◽  
Tatjana M. Mihajilov-Krstev ◽  
Dejan M. Nikolić ◽  
Olga G. Cvetković ◽  
...  

The composition and antimicrobial activity of the essential oil of Heracleum sibiricum L. (Apiaceae) was studied. The aerial part of plant was hydro-distilled and chemical composition of the essential oil was analyzed by GC and GC-MS. Forty-six compounds, corresponding to 95.12% of the total oil, were identified. Esters represented the major chemical class (69.55%) while the main constituents were octyl butanoate (36.82%), hexyl butanoate (16.08%), 1-octanol (13.62%) and octyl hexanoate (8.10%). Antibacterial activity of the essential oil and reference antibiotics against nine bacterial strains was tested by the broth microdilution method. The results of the bioassays showed that essential oil had slight antimicrobial activities against all tested microorganisms (MIC and MBC values were in the range of 2431.2 to 9724.8 μg/mL). Reference antibiotics were active in concentrations between 0.5 and 16.0 μg/mL. The results confirm that Gram-positive bacteria were more susceptible to the essential oil of H. sibiricum, in comparison with Gram-negative bacteria.


2020 ◽  
Vol 13 (7) ◽  
pp. 153
Author(s):  
Artur Adamczak ◽  
Marcin Ożarowski ◽  
Tomasz M. Karpiński

Curcumin, a principal bioactive substance of turmeric (Curcuma longa L.), is reported as a strong antioxidant, anti-inflammatory, antibacterial, antifungal, and antiviral agent. However, its antimicrobial properties require further detailed investigations into clinical and multidrug-resistant (MDR) isolates. In this work, we tested curcumin’s efficacy against over 100 strains of pathogens belonging to 19 species. This activity was determined by the broth microdilution method and by calculating the minimum inhibitory concentration (MIC). Our findings confirmed a much greater sensitivity of Gram-positive than Gram-negative bacteria. This study exhibited a significantly larger variation in the curcumin activity than previous works and suggested that numerous clinical strains of widespread pathogens have a poor sensitivity to curcumin. Similarly, the MICs of the MDR types of Staphylococcus aureus, S. haemolyticus, Escherichia coli, and Proteus mirabilis were high (≥2000 µg/mL). However, curcumin was effective against some species and strains: Streptococcus pyogenes (median MIC = 31.25 µg/mL), methicillin-sensitive S. aureus (250 µg/mL), Acinetobacter lwoffii (250 µg/mL), and individual strains of Enterococcus faecalis and Pseudomonas aeruginosa (62.5 µg/mL). The sensitivity of species was not associated with its affiliation to the genus, and it could differ a lot (e.g., S. pyogenes, S. agalactiae and A. lwoffii, A. baumannii). Hence, curcumin can be considered as a promising antibacterial agent, but with a very selective activity.


2008 ◽  
Vol 52 (11) ◽  
pp. 3837-3843 ◽  
Author(s):  
Jennifer M. Adams-Haduch ◽  
David L. Paterson ◽  
Hanna E. Sidjabat ◽  
Anthony W. Pasculle ◽  
Brian A. Potoski ◽  
...  

ABSTRACT A total of 49 unique clinical isolates of multidrug-resistant (MDR) Acinetobacter baumannii identified at a tertiary medical center in Pittsburgh, Pennsylvania, between August 2006 and September 2007 were studied for the genetic basis of their MDR phenotype. Approximately half of all A. baumannii clinical isolates identified during this period qualified as MDR, defined by nonsusceptibility to three or more of the antimicrobials routinely tested in the clinical microbiology laboratory. Among the MDR isolates, 18.4% were resistant to imipenem. The frequencies of resistance to amikacin and ciprofloxacin were high at 36.7% and 95.9%, respectively. None of the isolates was resistant to colistin or tigecycline. The presence of the carbapenemase gene bla OXA-23 and the 16S rRNA methylase gene armA predicted high-level resistance to imipenem and amikacin, respectively. bla OXA-23 was preceded by insertion sequence ISAba1, which likely provided a potent promoter activity for the expression of the carbapenemase gene. The structure of the transposon defined by ISAba1 differed from those reported in Europe, suggesting that ISAba1-mediated acquisition of bla OXA-23 may occur as an independent event. Typical substitutions in the quinolone resistance-determining regions of the gyrA and parC genes were observed in the ciprofloxacin-resistant isolates. Plasmid-mediated quinolone resistance genes, including the qnr genes, were not identified. Fifty-nine percent of the MDR isolates belonged to a single clonal group over the course of the study period, as demonstrated by pulsed-field gel electrophoresis.


Sign in / Sign up

Export Citation Format

Share Document