scholarly journals The Response of Extracellular Polymeric Substances Production by Phototrophic Biofilms to a Sequential Disturbance Strongly Depends on Environmental Conditions

2021 ◽  
Vol 12 ◽  
Author(s):  
Emilie Loustau ◽  
Joséphine Leflaive ◽  
Claire Boscus ◽  
Quentin Amalric ◽  
Jessica Ferriol ◽  
...  

Phototrophic biofilms are exposed to multiple stressors that can affect them both directly and indirectly. By modifying either the composition of the community or the physiology of the microorganisms, press stressors may indirectly impact the ability of the biofilms to cope with disturbances. Extracellular polymeric substances (EPS) produced by the biofilm are known to play an important role in its resilience to various stresses. The aim of this study was to decipher to what extent slight modifications of environmental conditions could alter the resilience of phototrophic biofilm EPS to a realistic sequential disturbance (4-day copper exposure followed by a 14-day dry period). By using very simplified biofilms with a single algal strain, we focused solely on physiological effects. The biofilms, composed by the non-axenic strains of a green alga (Uronema confervicolum) or a diatom (Nitzschia palea) were grown in artificial channels in six different conditions of light intensity, temperature and phosphorous concentration. EPS quantity (total organic carbon) and quality (ratio protein/polysaccharide, PN/PS) were measured before and at the end of the disturbance, and after a 14-day rewetting period. The diatom biofilm accumulated more biomass at the highest temperature, with lower EPS content and lower PN/PS ratio while green alga biofilm accumulated more biomass at the highest light condition with lower EPS content and lower PN/PS ratio. Temperature, light intensity, and P concentration significantly modified the resistance and/or recovery of EPS quality and quantity, differently for the two biofilms. An increase in light intensity, which had effect neither on the diatom biofilm growth nor on EPS production before disturbance, increased the resistance of EPS quantity and the resilience of EPS quality. These results emphasize the importance of considering the modulation of community resilience ability by environmental conditions, which remains scarce in the literature.

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253224
Author(s):  
Patrick Ronan ◽  
Otini Kroukamp ◽  
Steven N. Liss ◽  
Gideon Wolfaardt

As the effects of climate change become increasingly evident, the need for effective CO2 management is clear. Microalgae are well-suited for CO2 sequestration, given their ability to rapidly uptake and fix CO2. They also readily assimilate inorganic nutrients and produce a biomass with inherent commercial value, leading to a paradigm in which CO2-sequestration, enhanced wastewater treatment, and biomass generation could be effectively combined. Natural non-axenic phototrophic cultures comprising both autotrophic and heterotrophic fractions are particularly attractive in this endeavour, given their increased robustness and innate O2-CO2 exchange. In this study, the interplay between CO2-consuming autotrophy and CO2-producing heterotrophy in a non-axenic phototrophic biofilm was examined. When the biofilm was cultivated under autotrophic conditions (i.e. no organic carbon), it grew autotrophically and exhibited CO2 uptake. After amending its growth medium with organic carbon (0.25 g/L glucose and 0.28 g/L sodium acetate), the biofilm rapidly toggled from net-autotrophic to net-heterotrophic growth, reaching a CO2 production rate of 60 μmol/h after 31 hours. When the organic carbon sources were provided at a lower concentration (0.125 g/L glucose and 0.14 g/L sodium acetate), the biofilm exhibited distinct, longitudinally discrete regions of heterotrophic and autotrophic metabolism in the proximal and distal halves of the biofilm respectively, within 4 hours of carbon amendment. Interestingly, this upstream and downstream partitioning of heterotrophic and autotrophic metabolism appeared to be reversible, as the position of these regions began to flip once the direction of medium flow (and hence nutrient availability) was reversed. The insight generated here can inform new and important research questions and contribute to efforts aimed at scaling and industrializing algal growth systems, where the ability to understand, predict, and optimize biofilm growth and activity is critical.


1983 ◽  
Vol 34 (3) ◽  
pp. 431 ◽  
Author(s):  
DJ Griffiths ◽  
L Thinh

In the symbiotic association between the prokaryotic green alga Prochloron and three didemnid host species (Diplosoma similis, Lissoclinum bistratum, Trididemnum cyclops), between 6 and 51 % of the total carbon fixed during exposure for 1 h to H14CO3- in the light (150 �E m-2 s-1) becomes associated with the host tissue. Dark fixation of 14CO2 in these ascidian species and in Lissoclinum punctatum never exceeds 6% of photosynthetic fixation at saturating light intensity. The corresponding values for dark fixation of 14CO2 in isolated Prochloron cells fall within the same range. There is very little excretion of photosynthate from whole colonies of the above ascidian species nor from Didemnum molle, Lissoclinum voeltzkowi and Trididemnum miniatum (usually less than 1 % of total photosynthate at saturation light intensity), suggesting an efficient transfer mechanism from Prochloron to host. Evidence from pulse-chase experiments suggests that transfer probably involves the early products of photosynthesis. The extent of transfer of photosynthate between Prochloron and T. cyclops varies with the rate of photosynthetic 14CO2 fixation into the whole colony but there is some transfer even at low light intensities, which strongly limit photosynthesis.


2017 ◽  
Vol 14 (24) ◽  
pp. 5693-5704 ◽  
Author(s):  
Gabriella M. Weiss ◽  
Eva Y. Pfannerstill ◽  
Stefan Schouten ◽  
Jaap S. Sinninghe Damsté ◽  
Marcel T. J. van der Meer

Abstract. Over the last decade, hydrogen isotopes of long-chain alkenones have been shown to be a promising proxy for reconstructing paleo sea surface salinity due to a strong hydrogen isotope fractionation response to salinity across different environmental conditions. However, to date, the decoupling of the effects of alkalinity and salinity, parameters that co-vary in the surface ocean, on hydrogen isotope fractionation of alkenones has not been assessed. Furthermore, as the alkenone-producing haptophyte, Emiliania huxleyi, is known to grow in large blooms under high light intensities, the effect of salinity on hydrogen isotope fractionation under these high irradiances is important to constrain before using δDC37 to reconstruct paleosalinity. Batch cultures of the marine haptophyte E. huxleyi strain CCMP 1516 were grown to investigate the hydrogen isotope fractionation response to salinity at high light intensity and independently assess the effects of salinity and alkalinity under low-light conditions. Our results suggest that alkalinity does not significantly influence hydrogen isotope fractionation of alkenones, but salinity does have a strong effect. Additionally, no significant difference was observed between the fractionation responses to salinity recorded in alkenones grown under both high- and low-light conditions. Comparison with previous studies suggests that the fractionation response to salinity in culture is similar under different environmental conditions, strengthening the use of hydrogen isotope fractionation as a paleosalinity proxy.


2018 ◽  
Vol 210 ◽  
pp. 03008
Author(s):  
Aparajita Das ◽  
Manash Pratim Sarma ◽  
Kandarpa Kumar Sarma ◽  
Nikos Mastorakis

This paper describes the design of an operative prototype based on Internet of Things (IoT) concepts for real time monitoring of various environmental conditions using certain commonly available and low cost sensors. The various environmental conditions such as temperature, humidity, air pollution, sun light intensity and rain are continuously monitored, processed and controlled by an Arduino Uno microcontroller board with the help of several sensors. Captured data are broadcasted through internet with an ESP8266 Wi-Fi module. The projected system delivers sensors data to an API called ThingSpeak over an HTTP protocol and allows storing of data. The proposed system works well and it shows reliability. The prototype has been used to monitor and analyse real time data using graphical information of the environment.


1972 ◽  
Vol 50 (12) ◽  
pp. 2673-2682 ◽  
Author(s):  
William H. Harvey ◽  
James D. Caponetti

Intact, set III, cinnamon fern cataphyll and frond primordia, which were shown to have no predisposition to fertility in situ, produced sporangia when excised and cultured under sterile conditions in Knudson's medium supplemented with various levels of sucrose and maintained on 11 different regimens of light, darkness, and temperature for 10 weeks. Increasing levels of sucrose resulted in increased fertility under all environmental conditions, but the highest percentage of fertility was obtained under conditions of continuous dark at 26 °C. As the length of the light phase of the photoperiods decreased, a progressive increase in induction of fertile leaves was observed, suggesting that periods of long light exposure are inhibitory to the initiation of sporangia. Conversely, as the light intensity was increased, an inhibition of sporophyll differentiation occurred. Sporangia excised from dark-induced sporophylls and cultured in the light produced viable spores which germinated yielding haploid gametophytes that ultimately produced sporophytes.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Resti Ayu Lestari ◽  
Rinda Andhita Regia ◽  
Hafifatul Auliya Rahmy ◽  
Vezy Hidayatifa Thayyibah ◽  
Nadya Fadhillah Febrinaldi

The Covid-19 pandemic is affecting indoor tourism in West Sumatra. The spread of a virus through could be influenced by indoor air quality. This study aims to analyze the potensial spread of Covid-19 in the indoor tourism in West Sumatra based on the physical indoor air quality, including PM2.5 concentration, temperature, humidity, and light intensity. The research objects were Lubang Japang Bukittinggi and Istano Basa Pagaruyung. The research was conducted by using sampling and interview methods. The data obtained were compared to Permenkes No. 1077/Menkes/Per/V/2011 and the suitable environmental conditions for the virus. The results showed that the temperature values in tourist objects were below the standards used. The temperature value in the research objects ranged from 20oC to 30oC. The humidity, light intensity, and PM2.5 concentration values were outside the ranges stipulated by regulations. Lubang Japang humidity was: 75.97 - 94.76 Rh; Istano Basa Pagaruyung: 65.83 - 67.16 Rh. Lubang Japang light intensity was: 0.4 - 4.0 Lux; Istano Basa Pagaruyung: 28 - 38 Lux. The concentration of PM2.5 at Lubang Japang: 187.45 µg / Nm3; Istano Basa Pagaruyung: 77.29 µg / Nm3. Based on this research, the humidity and the PM2.5 concentration of the research objects have the potential to spread the Covid-19.


Weed Science ◽  
1971 ◽  
Vol 19 (6) ◽  
pp. 732-735 ◽  
Author(s):  
L. D. Houseworth ◽  
B. G. Tweedy

Toxicity of soil-applied 2-(tert-butylamino)-4-(ethylamino)-6-(methylthio)-s-triazine (terbutryn) to cucumbers (Cucumis sativusL. ‘Gemni’) and oats (Avena sativusL. ‘Nodaway’) was increased 2.2 times when the light intensity was raised from 11,000 to 22,000 lumens/m2and 1.5 times when the moisture level was raised from low (25 to 50% field capacity) to high (75 to 100% field capacity). When the temperature was raised from the low level (19 C day, 14 C night) to the high level (29 C day, 24 C night) toxicity of terbutryn to oats was increased 1.6 times and toxicity to cucumber was increased 1.3 times. Analysis of interactions of the three variables on toxicity of terbutryn showed that environmental conditions favoring rapid growth resulted in an increase in phytotoxicity.


2019 ◽  
Vol 85 (7) ◽  
Author(s):  
Rey Allen ◽  
Bruce E. Rittmann ◽  
Roy Curtiss

ABSTRACTPhototrophic biofilms are key to nutrient cycling in natural environments and bioremediation technologies, but few studies describe biofilm formation by pure (axenic) cultures of a phototrophic microbe. The cyanobacteriumSynechocystissp. strain PCC 6803 (hereSynechocystis) is a model microorganism for the study of oxygenic photosynthesis and biofuel production. We report here that wild-type (WT)Synechocystiscaused extensive biofilm formation in a 2,000-liter outdoor nonaxenic photobioreactor under conditions attributed to nutrient limitation. We developed a biofilm assay and found that axenicSynechocystisforms biofilms of cells and extracellular material but only when cells are induced by an environmental signal, such as a reduction in the concentration of growth medium BG11. Mutants lacking cell surface structures, namely type IV pili and the S-layer, do not form biofilms. To further characterize the molecular mechanisms of cell-cell binding bySynechocystis, we also developed a rapid (8-h) axenic aggregation assay. Mutants lacking type IV pili were unable to aggregate, but mutants lacking a homolog to Wza, a protein required for type 1 exopolysaccharide export inEscherichia coli, had a superbinding phenotype. In WT cultures, 1.2× BG11 medium induced aggregation to the same degree as 0.8× BG11 medium. Overall, our data support that Wza-dependent exopolysaccharide is essential to maintain stable, uniform suspensions of WTSynechocystiscells in unmodified growth medium and that this mechanism is counteracted in a pilus-dependent manner under altered BG11 concentrations.IMPORTANCEMicrobes can exist as suspensions of individual cells in liquids and also commonly form multicellular communities attached to surfaces. Surface-attached communities, called biofilms, can confer antibiotic resistance to pathogenic bacteria during infections and establish food webs for global nutrient cycling in the environment. Phototrophic biofilm formation is one of the earliest phenotypes visible in the fossil record, dating back over 3 billion years. Despite the importance and ubiquity of phototrophic biofilms, most of what we know about the molecular mechanisms, genetic regulation, and environmental signals of biofilm formation comes from studies of heterotrophic bacteria. We aim to help bridge this knowledge gap by developing new assays forSynechocystis, a phototrophic cyanobacterium used to study oxygenic photosynthesis and biofuel production. With the aid of these new assays, we contribute to the development ofSynechocystisas a model organism for the study of axenic phototrophic biofilm formation.


1963 ◽  
Vol 205 (5) ◽  
pp. 927-940 ◽  
Author(s):  
H. Schiff

The anatomy of the eye of Squilla mantis and the geometrical optics derived from it are briefly described. The shape and size of the electroretinogram (ERG) are dependent on a) position where it is picked up, b) the light intensity, and c) the change of intensity. Single-fiber analysis confirms the results obtained by the anatomy and the ERG of the eye. Frequency of response of a single secondary fiber to intensity changes of light is proportional to the derivate dI/dt ( I = intensity; t = time). The Squilla sees a moving object as the sum of the intensity changes caused by that object, varied in time and space. The eyes have a maximum of sensitivity for light of 535–555 mµ wavelength, and a second maximum in the near ultraviolet light, the latter partly seen as green fluorescence due to an eye pigment. Anatomy, physiology, and the environmental conditions have been combined to explain the vision of this animal, adapted to his life in the blue-violet twilight of the deeper Mediterranean sea.


Sign in / Sign up

Export Citation Format

Share Document