scholarly journals Construction and Generation of a Recombinant Senecavirus a Stably Expressing the NanoLuc Luciferase for Quantitative Antiviral Assay

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoran Guo ◽  
Kuan Zhao ◽  
Xiaona Liu ◽  
Baishi Lei ◽  
Wuchao Zhang ◽  
...  

Senecavirus A (SVA), also known as Seneca Valley virus, is a recently emerged picornavirus that can cause swine vesicular disease, posing a great threat to the global swine industry. A recombinant reporter virus (rSVA-Nluc) stably expressing the nanoluciferase (Nluc) gene between SVA 2A and 2B was developed to rapidly detect anti-SVA neutralizing antibodies and establish a high-throughput screen for antiviral agents. This recombinant virus displayed similar growth kinetics as the parental virus and remained stable for more than 10 passages in BHK-21 cells. As a proof-of-concept for its utility for rapid antiviral screening, this reporter virus was used to rapidly quantify anti-SVA neutralizing antibodies in 13 swine sera samples and screen for antiviral agents, including interferons ribavirin and interferon-stimulated genes (ISGs). Subsequently, interfering RNAs targeting different regions of the SVA genome were screened using the reporter virus. This reporter virus (rSVA-Nluc) represents a useful tool for rapid and quantitative screening and evaluation of antivirals against SVA.

2021 ◽  
Author(s):  
Wei Wen ◽  
Xinghua Chen ◽  
Qiang Lv ◽  
Huanchun Chen ◽  
Ping Qian ◽  
...  

Abstract Background Seneca Valley virus (SVV) is a picornavirus that causes vesicular disease in swine. Clinical characteristics of the disease is similar to common viral diseases such as foot-and-mouth disease virus, porcine vesicular disease virus, and vesicular stomatitis virus, which can cause vesicles in the nose or hoof of pigs. Therefore, developing tools for detecting SVV infection is critical and urgent. Methods The neutralizing antibodies were produced to detect the neutralizing epitope. Results Five SVV neutralizing monoclonal antibodies (mAb), named 2C8, 3E4, 4C3, 6D7, and 7C11, were generated by immunizing mouses with ultra-purified SVV-LNSY01-2017. All five monoclonal antibodies exhibited high neutralizing titers to SVV. The epitopes targeted by these mAbs were further identified by peptide scanning using GST fusion peptides. The 153QELNEE158 peptide is defined as the smallest linear neutralizing epitope. The antibodies showed no reactivity to VP2 single mutants E157A. Furthermore, the antibodies showed no neutralizing activity with the recombinant virus (SVV-E157A). Conclusion The five monoclonal antibodies and identified epitopes may contribute to further research on the structure and function of VP2 and the development of diagnostic methods for detecting different SVV strains. Additionally, the epitope recognized by monoclonal antibodies against VP2 protein may provide insights for novel SVV vaccines and oncolytic viruses development.


2005 ◽  
Vol 79 (6) ◽  
pp. 3289-3296 ◽  
Author(s):  
Choong-Tat Keng ◽  
Aihua Zhang ◽  
Shuo Shen ◽  
Kuo-Ming Lip ◽  
Burtram C. Fielding ◽  
...  

ABSTRACT The spike (S) protein of the severe acute respiratory syndrome coronavirus (SARS-CoV) interacts with cellular receptors to mediate membrane fusion, allowing viral entry into host cells; hence it is recognized as the primary target of neutralizing antibodies, and therefore knowledge of antigenic determinants that can elicit neutralizing antibodies could be beneficial for the development of a protective vaccine. Here, we expressed five different fragments of S, covering the entire ectodomain (amino acids 48 to 1192), as glutathione S-transferase fusion proteins in Escherichia coli and used the purified proteins to raise antibodies in rabbits. By Western blot analysis and immunoprecipitation experiments, we showed that all the antibodies are specific and highly sensitive to both the native and denatured forms of the full-length S protein expressed in virus-infected cells and transfected cells, respectively. Indirect immunofluorescence performed on fixed but unpermeabilized cells showed that these antibodies can recognize the mature form of S on the cell surface. All the antibodies were also able to detect the maturation of the 200-kDa form of S to the 210-kDa form by pulse-chase experiments. When the antibodies were tested for their ability to inhibit SARS-CoV propagation in Vero E6 culture, it was found that the anti-SΔ10 antibody, which was targeted to amino acid residues 1029 to 1192 of S, which include heptad repeat 2, has strong neutralizing activities, suggesting that this region of S carries neutralizing epitopes and is very important for virus entry into cells.


2017 ◽  
Vol 55 (10) ◽  
pp. 3028-3036 ◽  
Author(s):  
Chao Shan ◽  
Daniel A. Ortiz ◽  
Yujiao Yang ◽  
Susan J. Wong ◽  
Laura D. Kramer ◽  
...  

ABSTRACT Currently, the laboratory diagnosis of Zika virus (ZIKV) infection is primarily through the detection of ZIKV RNA or antibodies against ZIKV proteins. The detection of viral RNA is highly sensitive and specific, but periods of viremia and viruria are brief, limiting the utility of ZIKV RNA assays. Instead, most ZIKV infections are diagnosed serologically, using an IgM antibody capture enzyme-linked immunosorbent assay (MAC-ELISA) for screening, followed by a confirmatory plaque reduction neutralization test (PRNT). Typical turnaround times vary, due to assay incubation periods and a lack of clinical laboratories performing these tests. Recently, a novel luciferase-ZIKV- and -dengue virus (DENV)-based serological assay, which considerably improves the turnaround times and throughput for ZIKV diagnosis, was described. Using the traditional PRNT as a reference method, we evaluated the performance characteristics of the reporter virus neutralization test (RVNT) with 258 clinical serum specimens. The ZIKV RVNT produced primary ZIKV screening and secondary confirmation results in 4 days, with 100% reproducibility. As a screening assay, the ZIKV RVNT displayed excellent diagnostic accuracy, sensitivity, and specificity of 98.2%, 100%, and 98.1%, respectively. As a confirmatory assay, the ZIKV RVNT titers displayed 93.1% agreement with the traditional ZIKV PRNT titers. Overall, the RVNT accurately and reliably detects neutralizing antibodies in patient serum specimens, with improved turnaround times, and can be used for the serological detection of ZIKV infections. Due to the homogeneous 96-well format, the RVNT has also significantly improved the assay throughput to allow testing of a large number of specimens in a single run.


2005 ◽  
Vol 79 (18) ◽  
pp. 11638-11646 ◽  
Author(s):  
Christopher E. Yi ◽  
Lei Ba ◽  
Linqi Zhang ◽  
David D. Ho ◽  
Zhiwei Chen

ABSTRACT Neutralizing antibodies (NAbs) against severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) spike (S) glycoprotein confer protection to animals experimentally infected with the pathogenic virus. We and others previously demonstrated that a major mechanism for neutralizing SARS-CoV was through blocking the interaction between the S glycoprotein and the cellular receptor angiotensin-converting enzyme 2 (ACE2). In this study, we used in vivo electroporation DNA immunization and a pseudovirus-based assay to functionally evaluate immunogenicity and viral entry. We characterized the neutralization and viral entry determinants within the ACE2-binding domain of the S glycoprotein. The deletion of a positively charged region SΔ(422-463) abolished the capacity of the S glycoprotein to induce NAbs in mice vaccinated by in vivo DNA electroporation. Moreover, the SΔ(422-463) pseudovirus was unable to infect HEK293T-ACE2 cells. To determine the specific residues that contribute to related phenotypes, we replaced eight basic amino acids with alanine. We found that a single amino acid substitution (R441A) in the full-length S DNA vaccine failed to induce NAbs and abolished viral entry when pseudoviruses were generated. However, another substitution (R453A) abolished viral entry while retaining the capacity for inducing NAbs. The difference between R441A and R453A suggests that the determinants for immunogenicity and viral entry may not be identical. Our findings provide direct evidence that these basic residues are essential for immunogenicity of the major neutralizing domain and for viral entry. Our data have implications for the rational design of vaccine and antiviral agents as well as for understanding viral tropism.


2011 ◽  
Vol 24 (1) ◽  
pp. 42-50 ◽  
Author(s):  
Ming Yang ◽  
Rebekah van Bruggen ◽  
Wanhong Xu

Seneca Valley virus (SVV), a member of the Picornaviridae family, was implicated in a suspicious vesicular disease discovered in pigs from Canada in 2007. Because any outbreak of vesicular disease in pigs is assumed to be foot-and-mouth disease (FMD) until confirmed otherwise, a test for diagnosing the presence of SVV would be a very useful tool. To develop the diagnostic tests for SVV infection, 5 monoclonal antibodies (mAbs) were produced from mice immunized with binary ethylenimine (BEI)-inactivated SVV. Using a dot blot assay, the reactivity of the mAbs was confirmed to be specific for SVV, not reacting with any of the other vesicular disease viruses tested. The mAbs demonstrated reactivity with SVV antigen in infected cells by an immunohistochemistry assay. An SVV-specific competitive enzyme-linked immunosorbent assay (cELISA) was developed using BEI-inactivated SVV antigen and a mAb for serodiagnosis. The cELISA results were compared to the indirect isotype (immunoglobulin [Ig]M and IgG) ELISA and the virus neutralization test. All SVV experimentally inoculated pigs exhibited a positive SVV-specific antibody response at 6 days postinoculation, and the sera remained positive until the end of the experiment on day 57 (>40% inhibition) using the cELISA. The cELISA reflected the profile of the indirect ELISA for both IgM and IgG. This panel of SVV-specific mAbs is valuable for the identification of SVV antigen and the serological detection of SVV-specific antibodies.


2010 ◽  
Vol 55 (2) ◽  
pp. 937-939 ◽  
Author(s):  
David B. Olsen ◽  
Mary-Ellen Davies ◽  
Larry Handt ◽  
Kenneth Koeplinger ◽  
Nanyan Rena Zhang ◽  
...  

ABSTRACTEfforts to develop novel, interferon-sparing therapies for treatment of chronic hepatitis C (HCV) infection are contingent on the ability of combination therapies consisting of direct antiviral inhibitors to achieve a sustained virologic response. This work demonstrates a proof of concept that coadministration of the nucleoside analogue MK-0608 with the protease inhibitor MK-7009, both of which produced robust viral load declines as monotherapy, to an HCV-infected chimpanzee can achieve a cure of infection.


2020 ◽  
Author(s):  
Keshan Zhang ◽  
Guowei Xu ◽  
Shouxing Xu ◽  
Xijuan Shi ◽  
Chaochao Shen ◽  
...  

ABSTRACTExosomes are cup-shaped vesicles that are secreted by cells and are involved in the intercellular transport of a variety of substances, including proteins, RNA, and liposomes. Studies have shown that pathogenic microorganisms are contained in exosomes extracted from pathogenic micro-infected cells. The Seneca Valley virus (SVV) is a non-encapsulated single-stranded positive-strand RNA virus that causes ulceration in the pig’s nose, the appearance of blisters, and other clinical symptoms similar to foot-and-mouth disease (FMD). Whether exosomes from SVV-infected cells can mediate SVV intercellular transmission is of great significance. There have been no studies showing whether exosomes can carry SVV in susceptible and non-susceptible cells. Here, we first extracted and identified exosomes from SVV-infected IBRS-2 cells. It was confirmed that replication of SVV can be inhibited when IBRS-2 cells treated with exosomes inbihitor GW4869. Furthermore, laser confocal microscopy and qRT-PCR experiments were performed to investigate whether exosomes can carry SVV and enable the virus to proliferate in susceptible and non-susceptible cells. Finally, exosome-mediated intercellular transmission can not be completely blocked by SVV-specific neutralizing antibodies. Taken together, this study showed that exosomes extracted from the SVV-infected IBRS-2 cells can carry SVV and transmit productive SVV infection between SVV susceptible and non-susceptible cells, this transmit infection is resistant to SVV specific neutralization antibody.IMPORTANCEExosomes participate in intercellular communnication between cells. Exosomes derived from virus-infected cells can mediate virus transmission or/and regulate immune response. However, the function of exosomes that from SVV-infected host cells during SVV transmission is unclear. Here, we demonstrate SVV can utilize host exosomes to establish productive infection in intercellular transmission. Furthermore, exosome-mediated SVV transmission is resistant to SVVV-specific neutralizing antibodies. This discovery sheds light on neutralizing antibodies resistant to SVVV transmission by exosomes as a potential immune evasion mechanism.


PLoS ONE ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. e0250516
Author(s):  
Kelly Bohning ◽  
Stephanie Sonnberg ◽  
Hui-Ling Chen ◽  
Melissa Zahralban-Steele ◽  
Timothy Powell ◽  
...  

Zika virus is a Flavivirus, transmitted via Aedes mosquitos, that causes a range of symptoms including Zika congenital syndrome. Zika has posed a challenging situation for health, public and economic sectors of affected countries. To quantitate Zika virus neutralizing antibody titers in serum samples, we developed a high throughput plate based Zika virus reporter virus particle (RVP) assay that uses an infective, non-replicating particle encoding Zika virus surface proteins and capsid (CprME) and a reporter gene (Renilla luciferase). This is the first characterization of a Zika virus RVP assay in 384-well format using a Dengue replicon Renilla reporter construct. Serially diluted test sera were incubated with RVPs, followed by incubation with Vero cells. RVPs that have not been neutralized by antibodies in the test sera entered the cells and expressed Renilla luciferase. Quantitative measurements of neutralizing activity were determined using a plate-based assay and commercially available substrate. The principle of limiting the infection to a single round increases the precision of the assay measurements. RVP log10EC50 titers correlated closely with titers determined using a plaque reduction neutralization test (PRNT) (R2>95%). The plate-based Zika virus RVP assay also demonstrated high levels of precision, reproducibility and throughput. The assay employs identical reagents for human, rhesus macaque and mouse serum matrices. Spiking studies indicated that the assay performs equally well in different species, producing comparable titers irrespective of the serum species. The assay is conducted in 384-well plates and can be automated to simultaneously achieve high throughput and high reproducibility.


Author(s):  
Kai Duan ◽  
Bende Liu ◽  
Cesheng Li ◽  
Huajun Zhang ◽  
Ting Yu ◽  
...  

AbstractCurrently, there are no approved specific antiviral agents for 2019 novel coronavirus disease (COVID-19). In this study, ten severe patients confirmed by real-time viral RNA test were enrolled prospectively. One dose of 200 mL convalescent plasma (CP) derived from recently recovered donors with the neutralizing antibody titers above 1:640 was transfused to the patients as an addition to maximal supportive care and antiviral agents. The primary endpoint was the safety of CP transfusion. The second endpoints were the improvement of clinical symptoms and laboratory parameters within 3 days after CP transfusion. The median time from onset of illness to CP transfusion was 16.5 days. After CP transfusion, the level of neutralizing antibody increased rapidly up to 1:640 in five cases, while that of the other four cases maintained at a high level (1:640). The clinical symptoms were significantly improved along with increase of oxyhemoglobin saturation within 3 days. Several parameters tended to improve as compared to pre-transfusion, including increased lymphocyte counts (0.65×109/L vs. 0.76×109/L) and decreased C-reactive protein (55.98 mg/L vs. 18.13 mg/L). Radiological examinations showed varying degrees of absorption of lung lesionswithin 7 days. The viral load was undetectable after transfusion in seven patients who had previous viremia. No severe adverse effects were observed. This study showed CP therapy was welltolerated and could potentially improve the clinical outcomes through neutralizing viremia in severe COVID-19 cases. The optimal dose and time point, as well as the clinical benefit of CP therapy, needs further investigation in larger well-controlled trials.Significance StatementCOVID-19 is currently a big threat to global health. However, no specific antiviral agents are available for its treatment. In this work, we explored the feasibility of convalescent plasma (CP) transfusion to rescue severe patients. The results from 10 severe adult cases showed that one dose (200 mL) of CP was welltolerated and could significantly increase or maintain the neutralizing antibodies at a high level, leading to disappearance of viremia in 7 days. Meanwhile, clinical symptoms and paraclinical criteria rapidly improved within 3 days. Radiological examination showed varying degrees of absorption of lung lesions within 7 days. These results indicate that CP can serve as a promising rescue option for severe COVID-19 while the randomized trial is warranted.


Haematologica ◽  
2020 ◽  
Vol 105 (12) ◽  
pp. 2834-2840 ◽  
Author(s):  
Cesare Perotti ◽  
Fausto Baldanti ◽  
Raffaele Bruno ◽  
Claudia Del Fante ◽  
Elena Seminari ◽  
...  

Hyperimmune plasma from Covid-19 convalescent is a potential treatment for severe Covid-19. We conducted a multicenter one arm proof of concept interventional study. Patients with Covid-19 disease with moderate-to-severe Acute Respiratory Distress Syndrome, elevated C-reactive Protein and need for mechanical ventilation and/or CPAP were enrolled. One to three 250-300 ml unit of hyperimmune plasma (neutralizing antibodies titer ≥1:160) were administered. Primary outcome was 7-days hospital mortality. Secondary outcomes were PaO2/FiO2, laboratory and radiologic changes, as well as weaning from mechanical ventilation and safety. The study observed 46 patients from March, 25 to April, 21 2020. Patients were aged 63, 61% male, of them, 30 were on CPAP and 7 intubated. PaO2/FiO2 was 128 (SD 47). Bilateral infiltrates on chest X-ray was present in 36 patients (84%). Symptoms and ARDS duration were 14 (SD 7) and 6 days (SD 3). Three patients (6.5%) died within 7 days as compared to an expected 15% from the National Statistics and 30% from a small concurrent cohort of 23 patients. The upper one-sided 90%CI was 13.9%, allowing to reject the null hypothesis of a 15% mortality. PaO2/FiO2 increased by 112 units (95%CI 82 to142) in survivors, the chest radiogram severity decreased in 23% (95%CI 5% to 42%); CRP, Ferritin and LDH decreased by 60, 36 and 20% respectively. Weaning from CPAP was obtained in 26/30 patients and 3/7 were extubated. Five serious adverse events occurred in 4 patients (2 likely, 2 possible treatment related). In conclusion, Hyperimmune plasma in Covid-19 shows promising benefits, to be confirmed in a randomized controlled trial. This proof of concept study could open to future developments including hyperimmune plasma banking, development of standardized pharmaceutical products and monoclonal antibodies.


Sign in / Sign up

Export Citation Format

Share Document