scholarly journals Challenges in the Microbiological Diagnosis of Implant-Associated Infections: A Summary of the Current Knowledge

2021 ◽  
Vol 12 ◽  
Author(s):  
Alessandra Oliva ◽  
Maria Claudia Miele ◽  
Dania Al Ismail ◽  
Federica Di Timoteo ◽  
Massimiliano De Angelis ◽  
...  

Implant-associated infections are characterized by microbial biofilm formation on implant surface, which renders the microbiological diagnosis challenging and requires, in the majority of cases, a complete device removal along with a prolonged antimicrobial therapy. Traditional cultures have shown unsatisfactory sensitivity and a significant advance in the field has been represented by both the application of the sonication technique for the detachment of live bacteria from biofilm and the implementation of metabolic and molecular assays. However, despite the recent progresses in the microbiological diagnosis have considerably reduced the rate of culture-negative infections, still their reported incidence is not negligible. Overall, several culture- and non-culture based methods have been developed for diagnosis optimization, which mostly relies on pre-operative and intra-operative (i.e., removed implants and surrounding tissues) samples. This review outlines the principal culture- and non-culture based methods for the diagnosis of the causative agents of implant-associated infections and gives an overview on their application in the clinical practice. Furthermore, advantages and disadvantages of each method are described.

2017 ◽  
Vol 30 (3) ◽  
pp. 709-746 ◽  
Author(s):  
Udoka Okaro ◽  
Anteneh Addisu ◽  
Beata Casanas ◽  
Burt Anderson

SUMMARY Since the reclassification of the genus Bartonella in 1993, the number of species has grown from 1 to 45 currently designated members. Likewise, the association of different Bartonella species with human disease continues to grow, as does the range of clinical presentations associated with these bacteria. Among these, blood-culture-negative endocarditis stands out as a common, often undiagnosed, clinical presentation of infection with several different Bartonella species. The limitations of laboratory tests resulting in this underdiagnosis of Bartonella endocarditis are discussed. The varied clinical picture of Bartonella infection and a review of clinical aspects of endocarditis caused by Bartonella are presented. We also summarize the current knowledge of the molecular basis of Bartonella pathogenesis, focusing on surface adhesins in the two Bartonella species that most commonly cause endocarditis, B. henselae and B. quintana. We discuss evidence that surface adhesins are important factors for autoaggregation and biofilm formation by Bartonella species. Finally, we propose that biofilm formation is a critical step in the formation of vegetative masses during Bartonella-mediated endocarditis and represents a potential reservoir for persistence by these bacteria.


2021 ◽  
Vol 10 (8) ◽  
pp. 1641
Author(s):  
Stefanie Kligman ◽  
Zhi Ren ◽  
Chun-Hsi Chung ◽  
Michael Angelo Perillo ◽  
Yu-Cheng Chang ◽  
...  

Implant surface design has evolved to meet oral rehabilitation challenges in both healthy and compromised bone. For example, to conquer the most common dental implant-related complications, peri-implantitis, and subsequent implant loss, implant surfaces have been modified to introduce desired properties to a dental implant and thus increase the implant success rate and expand their indications. Until now, a diversity of implant surface modifications, including different physical, chemical, and biological techniques, have been applied to a broad range of materials, such as titanium, zirconia, and polyether ether ketone, to achieve these goals. Ideal modifications enhance the interaction between the implant’s surface and its surrounding bone which will facilitate osseointegration while minimizing the bacterial colonization to reduce the risk of biofilm formation. This review article aims to comprehensively discuss currently available implant surface modifications commonly used in implantology in terms of their impact on osseointegration and biofilm formation, which is critical for clinicians to choose the most suitable materials to improve the success and survival of implantation.


1995 ◽  
Vol 1 (2) ◽  
pp. 148-150 ◽  
Author(s):  
Philippe Brouqui ◽  
Didier Raoult ◽  
Jean Marc Durand

mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Volkan K. Köseoğlu ◽  
Hervé Agaisse

ABSTRACT Various bacterial pathogens display an intracellular lifestyle and spread from cell to cell through actin-based motility (ABM). ABM requires actin polymerization at the bacterial pole and is mediated by the expression of bacterial factors that hijack the host cell actin nucleation machinery or exhibit intrinsic actin nucleation properties. It is increasingly recognized that bacterial ABM factors, in addition to having a crucial task during the intracellular phase of infection, display “moonlighting” adhesin functions, such as bacterial aggregation, biofilm formation, and host cell adhesion/invasion. Here, we review our current knowledge of ABM factors and their additional functions, and we propose that intracellular ABM functions have evolved from ancestral, extracellular adhesin functions.


Author(s):  
Oksana Morozova ◽  
Edwin Gevorkyan

This descriptive review presents current knowledge about the bioengineering use of a zirconium dioxide, the advantages and disadvantages of the material, and the prospects for research in this direction. The work reflects the success of the practical application of the zirconium dioxide as a material for dental structures and biological implants. Such practical characteristics, such as color-stability, chemical stability, good aesthetics, biocompatibility and durability, allowed to actively use the zirconium dioxide as a material for producing various dental structures. In comparison with other ceramics, the presence of high-performance of strength and fracture toughness of the zirconium dioxide enables the use of this material as an alternative material for the reconstructions in the readings with considerable loads. High hardness determines the zirconium dioxide as an excellent material for articular prostheses, because of its hardness, provides a low level of wear and excellent biocompatibility. However, along with positive characteristics, a widespread practical problem of using the zirconium dioxide in dentistry is a chip or fracture of veneering ceramics. It has also been reported that there is a shortage of orthopedic implants such as hydrothermal stability. The solution of such problems is indicated and the use of composite materials based on the zirconium dioxide, which allows to solve a similar problem, as well as to increase the service life and reliability of orthopedic implants by providing a higher fracture toughness and mechanical strength. The existence of such composite materials based on the zirconium dioxide provides a significant increase in the wear resistance of orthopedic implants, which is essential for successful prosthetics


2013 ◽  
Vol 17 (3) ◽  
pp. 461-468 ◽  
Author(s):  
Gordon John ◽  
Jürgen Becker ◽  
Frank Schwarz

2019 ◽  
Vol 13 (3) ◽  
pp. 258-264 ◽  
Author(s):  
C. Alves

Purpose The Ponseti method is widely used in clubfoot treatment. Long-term follow-up shows high patient satisfaction and excellent functional outcomes. Clubfoot tendency to relapse is a problem yet to solve. Given the importance of bracing in relapse prevention, we ought to discuss current knowledge and controversies about bracing. Methods We describe types of braces used, with its advantages and disadvantages, suggesting bracing schedules and duration. We identify bracing problems and pinpoint strategies to promote adherence to bracing. Results When treating a clubfoot by the Ponseti method, the corrected foot should be held in an abducted and dorsiflexed position, in a foot abduction brace (FAB), with two shoes connected by a bar. The brace is applied after the clubfoot has been completely corrected by manipulation, serial casting and possibly Achilles tenotomy. Bracing is recommended until four to five years of age and needs to be fitted to the individual patient, based on age, associated relapse rate and timing when correction was finished. Parental non-adherence to FAB use can affect 34% to 61% of children and results in five- to 17-fold higher odds of relapse. In patients who have recurrent adherence problems, a unilateral lower leg custom-made orthosis can be considered as a salvage option. Healthcare providers must communicate with patients regarding brace wearing, set proper expectations and ensure accurate use. Conclusion Bracing is essential for preventing clubfoot relapse. Daily duration and length of bracing required to prevent recurrence is still unknown. Prospective randomized clinical trials may bring important data that will influence clinicians’ and families’ choices regarding bracing. Level of Evidence V


2020 ◽  
Vol 11 ◽  
Author(s):  
Jaione Valle ◽  
Xianyang Fang ◽  
Iñigo Lasa

One of the major components of the staphylococcal biofilm is surface proteins that assemble as scaffold components of the biofilm matrix. Among the different surface proteins able to contribute to biofilm formation, this review is dedicated to the Biofilm Associated Protein (Bap). Bap is part of the accessory genome of Staphylococcus aureus but orthologs of Bap in other staphylococcal species belong to the core genome. When present, Bap promotes adhesion to abiotic surfaces and induces strong intercellular adhesion by self-assembling into amyloid like aggregates in response to the levels of calcium and the pH in the environment. During infection, Bap enhances the adhesion to epithelial cells where it binds directly to the host receptor Gp96 and inhibits the entry of the bacteria into the cells. To perform such diverse range of functions, Bap comprises several domains, and some of them include several motifs associated to distinct functions. Based on the knowledge accumulated with the Bap protein of S. aureus, this review aims to summarize the current knowledge of the structure and properties of each domain of Bap and their contribution to Bap functionality.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3144
Author(s):  
David Romera ◽  
Beatriz Toirac ◽  
John-Jairo Aguilera-Correa ◽  
Amaya García-Casas ◽  
Aránzazu Mediero ◽  
...  

Fungal prosthetic-joint infections are rare but devastating complications following arthroplasty. These infections are highly recurrent and expose the patient to the development of candidemia, which has high mortality rates. Patients with this condition are often immunocompromised and present several comorbidities, and thus pose a challenge for diagnosis and treatment. The most frequently isolated organisms in these infections are Candida albicans and Candida parapsilosis, pathogens that initiate the infection by developing a biofilm on the implant surface. In this study, a novel hybrid organo–inorganic sol–gel coating was developed from a mixture of organopolysiloxanes and organophosphite, to which different concentrations of fluconazole or anidulafungin were added. Then, the capacity of these coatings to prevent biofilm formation and treat mature biofilms produced by reference and clinical strains of C. albicans and C. Parapsilosis was evaluated. Anidulafungin-loaded sol–gel coatings were more effective in preventing C. albicans biofilm formation, while fluconazole-loaded sol–gel prevented C. parapsilosis biofilm formation more effectively. Treatment with unloaded sol–gel was sufficient to reduce C. albicans biofilms, and the sol–gels loaded with fluconazole or anidulafungin slightly enhanced this effect. In contrast, unloaded coatings stimulated C. parapsilosis biofilm formation, and loading with fluconazole reduced these biofilms by up to 99%. In conclusion, these coatings represent a novel therapeutic approach with potential clinical use to prevent and treat fungal prosthetic-joint infections.


Sign in / Sign up

Export Citation Format

Share Document