scholarly journals Identification of Novel Tumor Microenvironment-Related Long Noncoding RNAs to Determine the Prognosis and Response to Immunotherapy of Hepatocellular Carcinoma Patients

2021 ◽  
Vol 8 ◽  
Author(s):  
Shenglan Huang ◽  
Jian Zhang ◽  
Xiaolan Lai ◽  
Lingling Zhuang ◽  
Jianbing Wu

Introduction: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. The tumor microenvironment (TME) plays a vital role in HCC progression. Thus, this research was designed to analyze the correlation between the TME and the prognosis of HCC patients and to construct a TME-related long noncoding RNA (lncRNA) signature to determine HCC patients’ prognosis and response to immunotherapy.Methods: We assessed the stromal–immune–estimate scores within the HCC microenvironment using the ESTIMATE (Estimation of Stromal and Immune Cells in Malignant Tumor Tissues Using Expression Data) algorithm based on The Cancer Genome Atlas database, and their associations with survival and clinicopathological parameters were also analyzed. Thereafter, differentially expressed lncRNAs were filtered out according to the immune and stromal scores. Cox regression analysis was performed to build a TME-related lncRNA risk signature. Kaplan–Meier analysis was used to explore the prognostic value of the risk signature. Furthermore, we explored the biological functions and immune microenvironment features in the high- and low-risk groups. Lastly, we probed the association of the risk model with treatment responses to immune checkpoint inhibitors (ICIs) in HCC.Results: The stromal, immune, and estimate scores were obtained utilizing the ESTIMATE algorithm for patients with HCC. Kaplan–Meier analysis showed that high scores were significantly correlated with better prognosis in HCC patients. Six TME-related lncRNAs were screened to construct the prognostic model. The Kaplan–Meier curves suggested that HCC patients with low risk had better prognosis than those with high risk. Receiver operating characteristic (ROC) curve and Cox regression analyses indicated that the risk model could predict HCC survival exactly and independently. Functional enrichment analysis revealed that some tumor- and immune-related pathways were activated in the high-risk group. We also revealed that some immune cells, which were important in enhancing immune responses toward cancer, were significantly increased in the low-risk group. In addition, there was a close correlation between ICIs and the risk signature, which can be used to predict the treatment responses of HCC patients.Conclusion: We analyzed the influence of the stromal, immune, and estimate scores on the prognosis of HCC patients. A novel TME-related lncRNA risk model was established, which could be effectively applied as an independent prognostic biomarker and predictor of ICIs for HCC patients.

2021 ◽  
Author(s):  
Shenglan Huang ◽  
Jian Zhang ◽  
Dan Li ◽  
Xiaolan Lai ◽  
Lingling Zhuang ◽  
...  

Abstract Introduction: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. Tumor microenvironment (TME) plays a vital role in the tumor progression of HCC. Thus, we aimed to analyze the association of TME with HCC prognosis, and construct an TME-related lncRNAs signature for predicting the prognosis of HCC patients.Methods: We firstly assessed the stromal/immune /Estimate scores within the HCC microenvironment using the ESTIMATE algorithm based on TCGA database, and its associations with survival and clinicopathological parameters were also analyzed. Then, different expression lncRNAs were filtered out according to immune/stromal scores. Cox regression was performed to built an TME-related lncRNAs risk signature. Kaplan–Meier analysis was carried out to explored the prognostic values of the risk signature. Furthermore, we explored the biological functions and immune microenvironment feathers in high- and low risk groups. Lastly, we probed the association of the risk signature with the treatment responses to immune checkpoint inhibitors (ICIs) in HCC by comparing the immunophenoscore (IPS).Results: Stromal/immune /Estimate scores of HCC patients were obtained based on the ESTIMATE algorithm. The Kaplan-Meier curve analysis showed the high stromal/immune/ Estimate scores were significantly associated with better prognosis of the HCC patients. Then, six TME-related lncRNAs were screened for constructing the prognosis model. Kaplan-Meier survival curves suggested that HCC patients in high-risk group had worse prognosis than those with low-risk. ROC curve and Cox regression analyses demonstrated the signature could predict HCC survival exactly and independently. Function enrichment analysis revealed that some tumor- and immune-related pathways associated with HCC tumorigenesis and progression might be activated in high-risk group. We also discovered that some immune cells, which were beneficial to enhance immune responses towards cancer, were remarkably upregulated in low-risk group. Besides, there was closely correlation of immune checkmate inhibitors (ICIs) with the risk signature and the signature can be used to predict treatment response of ICIs.Conclusions: We analyzed the impact of the tumor microenvironment scores on the prognosis of patients with HCC. A novel TME-related prognostic risk signature was established, which may improve prognostic predictive accuracy and guide individualized immunotherapy for HCC patients.


2020 ◽  
Author(s):  
Pengcheng Zhou ◽  
Jiang Wei ◽  
Lu Yuhua ◽  
Wang Lei ◽  
Zhang Yewei

Abstract Background: Hepatocellular carcinoma (HCC) is one of the most lethal malignant tumors worldwide with poor prognosis. Growing evidence has demonstrated that immune-related long non-coding RNAs (lncRNAs) are relevant to tumor microenvironment (TME) and can help to assess the effects of immunotherapy and evaluate prognosis. This study aimed to identify an immune-related lncRNA signature for the prospective assessment of immunotherapy and prognosis in HCC. Methods: HCC RNA-seq data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) project database. Firstly, we used ESTIMATE to evaluate the tumor microenvironment (TME). Then, cox regression analysis was used to construct a prognostic signature and the risk score. Univariate Cox regression, multivariate Cox regression, principal components analysis (PCA), the receiver operating characteristic (ROC) curve and stratification analyses were applied to confirm. Gene set enrichment analysis (GSEA) analysis was employed to explore the biological processes and pathways. Besides, CIBERSORT was used to estimate the abundance of tumor-infiltrating immune cells (TIICs). Furthermore, the relationship between the immune-related lncRNA signature and immune checkpoint genes was investigated. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) assays were used to demonstrated the expression of the six lncRNAs. Results:.We identified a six immune-related lncRNAs (MSC-AS1, AC145207.5, SNHG3, AL365203.2, AL031985.3, NRAV) with the ability to stratify patients into high-risk and low-risk groups with significantly different survival. Univariate Cox regression, multivariate Cox regression, ROC and stratification analyses confirmed that the six immune-related lncRNA signature was a novel independent prognostic factor in HCC patients. The high-risk group and low-risk group illustrated different distributions in PCA. GSEA suggested that the six immune-related lncRNA signature is involved in the immune-related biological processes and pathways. Besides, the six immune-related lncRNA signature was associated with the infiltration of immune cells. Furthermore, the six immune-related lncRNA signature was associated with the expression of critical immune genes and could predict the clinical response of immunotherapy. Finally, qRT-PCR demonstrated that the six lncRNAs were significantly differentially expressed in HCC cell lines and normal hepatic cell line. Conclusions: In summary, we identified a six immune-related lncRNA signature with the ability to predict outcome, immune cell infiltration and immunotherapy response in patients with hepatocellular carcinoma.


2021 ◽  
Author(s):  
Shenglan Huang ◽  
Dan Li ◽  
LingLing Zhuang ◽  
Jian Zhang ◽  
Jianbing Wu

Abstract Introduction: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with poor prognosis. Epithelial–mesenchymal transition (EMT) is crucial for cancer progression and associates with a worse prognosis. Thus, we aimed to construct an EMT-related lncRNAs signature for predicting the prognosis of HCC patients.Methods: We built an EMT-related lncRNA risk signature in the training set by using Cox regression and LASSO regression based on TCGA database. Kaplan-Meier survival analysis was conducted to compare the overall survival (OS) in different risk groups. Cox regression was performed to explore whether the signature could be used as an independent factor. A nomogram was built involving the risk score and clinicopathological features. Furthermore, we explored the biological functions and immune states in two groups.Results: 12 EMT-related lncRNAs were obtained for constructing the prognosis model in HCC. The Kaplan-Meier curve analysis revealed that patients in the high-risk group had worse survival than low-risk group. Time-dependent ROC and Cox regression analyses suggested that the signature could predict HCC survival exactly and independently. The prognostic value of the risk model was confirmed in the validation group. The nomogram was built and could accurately predict survival of HCC patients. GSEA results showed that in high-risk group cancer-related pathways were enriched, and exhibited more cell division activity suggested by Gene Ontology (GO) analysis.Conclusions: We established a novel EMT-related prognostic risk signature including 12 lncRNAs and constructed a nomogram to predict the prognosis in HCC patients, which may improve prognostic predictive accuracy for HCC patients and guide the individualized treatment methods for the patients with HCC.


2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Pingfei Tang ◽  
Weiming Qu ◽  
Dajun Wu ◽  
Shihua Chen ◽  
Minji Liu ◽  
...  

Background. Acidosis in the tumor microenvironment (TME) is involved in tumor immune dysfunction and tumor progression. We attempted to develop an acidosis-related index (ARI) signature to improve the prognostic prediction of pancreatic carcinoma (PC). Methods. Differential gene expression analyses of two public datasets (GSE152345 and GSE62452) from the Gene Expression Omnibus database were performed to identify the acidosis-related genes. The Cancer Genome Atlas–pancreatic carcinoma (TCGA-PAAD) cohort in the TCGA database was set as the discovery dataset. Univariate Cox regression and the Kaplan–Meier method were applied to screen for prognostic genes. The least absolute shrinkage and selection operator (LASSO) Cox regression was used to establish the optimal model. The tumor immune infiltrating pattern was characterized by the single-sample gene set enrichment analysis (ssGSEA) method, and the prediction of immunotherapy responsiveness was conducted using the tumor immune dysfunction and exclusion (TIDE) algorithm. Results. We identified 133 acidosis-related genes, of which 37 were identified as prognostic genes by univariate Cox analysis in combination with the Kaplan–Meier method ( p values of both methods < 0.05). An acidosis-related signature involving seven genes (ARNTL2, DKK1, CEP55, CTSV, MYEOV, DSG2, and GBP2) was developed in TCGA-PAAD and further validated in GSE62452. Patients in the acidosis-related high-risk group consistently showed poorer survival outcomes than those in the low-risk group. The 5-year AUCs (areas under the curve) for survival prediction were 0.738 for TCGA-PAAD and 0.889 for GSE62452, suggesting excellent performance. The low-risk group in TCGA-PAAD showed a higher abundance of CD8+ T cells and activated natural killer cells and was predicted to possess an elevated proportion of immunotherapeutic responders compared with the high-risk counterpart. Conclusions. We developed a reliable acidosis-related signature that showed excellent performance in prognostic prediction and correlated with tumor immune infiltration, providing a new direction for prognostic evaluation and immunotherapy management in PC.


2020 ◽  
Author(s):  
Li Liu ◽  
She Tian ◽  
Zhu Li ◽  
Yongjun Gong ◽  
Hao Zhang

Abstract Background : Hepatocellular carcinoma (HCC) is one of the most common clinical malignant tumors, resulting in high mortality and poor prognosis. Studies have found that LncRNA plays an important role in the onset, metastasis and recurrence of hepatocellular carcinoma. The immune system plays a vital role in the development, progression, metastasis and recurrence of cancer. Therefore, immune-related lncRNA can be used as a novel biomarker to predict the prognosis of hepatocellular carcinoma. Methods : The transcriptome data and clinical data of HCC patients were obtained by using The Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA‑LIHC), and immune-related genes were extracted from the Molecular Signatures Database (IMMUNE RESPONSE M19817 and IMMUNE SYSTEM PROCESS M13664). By constructing the co-expression network and Cox regression analysis, 13 immune-lncRNAs was identified to predict the prognosis of HCC patients. Patients were divided into high risk group and low risk group by using the risk score formula, and the difference in overall survival (OS) between the two groups was reflected by Kaplan-Meier survival curve. The time - dependent receiver operating characteristics (ROC) analysis and principal component analysis (PCA) were used to evaluate 13 immune -lncRNAs signature. Results : Through TCGA - LIHC extracted from 343 cases of patients with hepatocellular carcinoma RNA - Seq data and clinical data, 331 immune-related genes were extracted from the Molecular Signatures Database , co-expression networks and Cox regression analysis were constructed, 13 immune-lncRNAs signature was identified as biomarkers to predict the prognosis of patients. At the same time using the risk score median divided the patients into high risk and low risk groups, and through the Kaplan-Meier survival curve analysis found that high-risk group of patients' overall survival (OS) less low risk group of patients. The AUC value of the ROC curve is 0.828, and principal component analysis (PCA) results showed that patients could be clearly divided into two parts by immune-lncRNAs, which provided evidence for the use of 13 immune-lncRNAs signature as prognostic markers. Conclusion : Our study identified 13 immune-lncRNAs signature that can effectively predict the prognosis of HCC patients, which may be a new prognostic indicator for predicting clinical outcomes.


2020 ◽  
Author(s):  
Junhao Yin ◽  
Xiaoli Zeng ◽  
Zexin Ai ◽  
Miao Yu ◽  
Yang'ou Wu ◽  
...  

Abstract Background: Oral squamous cell carcinoma (OSCC) is a life-threatening disease that emerged as a major international health concern, associated with poor prognosis and the absence of specific biomarkers. Studies have shown that the ferroptosis-related genes (FRGs) can be used as tumor prognostic markers. However, FRGs’ prognostic value in OSCC needs further exploration. Our aim was to construct a novel FRG signature for overall survival (OS) prediction in OSCC patients and explore its role in immunotherapy.Methods: In our study, gene expression profile and clinical data of OSCC patients were collected from a public domain. FRGs were available from the FerrDb database. We performed univariate and multivariate Cox regression analyses to construct a multigene signature. The Kaplan-Meier (K-M) and receiver operating characteristic (ROC) methods were utilized to test the effectiveness of the FRG signature. A differential gene expression analysis was performed by the limma R package, followed by functional enrichment analyses. CIBERSORT was applied to analyze the tumor microenvironment (TME). Finally, the expression of human leukocyte antigen (HLA) and immune checkpoint molecules were analyzed to confirm the sensitivity of immunotherapy.Results: A total of 103 FRGs, expressed in OSCC (FRGs-OSCC), were identified from the two datasets by the Venn analysis. The Cox regression analysis identified 5 FRGs-OSCC that were associated with overall survival (all P < 0.01). The FRGs-OSCC risk model was established to classify patients into high risk and low risk groups. Compared with the low risk group, the survival time of the high-risk group was significantly reduced (P < 0.001). According to the multivariate Cox regression analyses, the risk score acted as an independent predictor for OS (HR > 1, P < 0.001). The accuracy of the FRGs-OSCC risk predictive model was confirmed by ROC curve analysis. The results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) showed significant enrichment of immune-related pathways, and a difference in tumor microenvironment between the two groups. The low risk group had the characteristics of higher expression of HLA and immune checkpoints (IDO1, LAG3, PDCD1 and TIGHT), a lower tumor purity and a higher infiltration of immune cells, indicating a more sensitive response to immunotherapy.Conclusions: The novel FRGs-OSCC risk score system can be used to predict OSCC prognosis. Ferroptosis targeting may be a therapeutic option for OSCC.


Author(s):  
JinQun Jiang ◽  
HongYan Xu ◽  
PingShen Zhao ◽  
Hai Lu

Cervical cancer is a common malignancy in women and has a poor prognosis.More and more studies have shown that autophagy disorder is closely related to the occurrence of tumors. However, the prognostic role of autophagy gene in cervical cancer is still unclear. In this study, we constructed the risk signatures of autophagy related genes to predict the prognosis of cervical cancer. The expression profiles and clinical information of autophagy gene sets were downloaded from the TCGA and GES52903 queues as training sets and validation sets. The cervical normal tissue expression profile data from UCSC XENA website is GTEx data as a supplement to TCGA normal cervical tissue. Univariate COX regression analysis of 17 different autophagy genes with the Consensus approach tumor samples from the TCGA is divided into six subtypes, and the clinical traits in the six subtypes have different distribution, with further then absolute shrinkage and selection operator (LASSO) and multiariable COX regression method finally got seven autophagy genetic risk model is constructed, in the training set, the survival rate of high risk group is lower than the low risk group (p &lt; 0.0001), the validation set,The AUC area of the receiver operating characteristic (ROC) curve, the training set is 0.894, and the verification set is 0.736. We find that the high and low risk score is closely related to the TMN stage (All P is less than 0.05).The nomogram shows that the risk score combined with other indicators such as age, G,T,M, and N better predicts 1-year, 2-year, 3-year survival, and the DCA curve shows that the risk model combined with other indicators produces better clinical efficacy.Then immune cells in 28 in the enrichment score, there were statistically significant differences, high and low risk most GSEA enrichment analysis, the main enrichment in G2 / M checkpoint high-risk score, Genes defining epithelial and mesenchymal transition, raised in response to the low oxygen levels (hypoxia) gene, gene is important to the mitotic spindle assembly, these are closely related with the occurrence of tumor . In conclusion, our constructed autophagy risk signature may be a prognostic tool for cervical cancer.


2020 ◽  
Vol 27 (5) ◽  
Author(s):  
G. Nogueira-Costa ◽  
I. Fernandes ◽  
R. Gameiro ◽  
J. Gramaça ◽  
A.T. Xavier ◽  
...  

Introduction Inflammation is a critical component in carcinogenesis. The neutrophil-to-lymphocyte ratio (nlr) has been retrospectively studied as a biomarker of prognosis in metastatic colorectal cancer (mcrc). Compared with a low nlr, a high nlr is associated with worse prognosis. In the present study, we compared real-world survival for patients with mcrc based on their nlr group, and we assessed the utility of the nlr in determining first-line chemo­therapy and metastasectomy benefit. Methods In this retrospective and descriptive analysis of patients with mcrc undergoing first-line chemotherapy in a single centre, the last systemic absolute neutrophil and lymphocyte count before treatment was used for the nlr. A receiver operating characteristic curve was used to estimate the nlr cut-off value, dividing the patients into low and high nlr groups. Median overall survival (mos) was compared using Kaplan–Meier curves and the log-rank test. A multivariate analysis was performed using a Cox regression model. Results The 102 analyzed patients had a median follow-up of 15 months. Regardless of systemic therapy, approx­imately 20% of patients underwent metastasectomy. The nlr cut-off was established at 2.35, placing 45 patients in the low-risk group (nlr < 2.35) and 57 in the high-risk group (nlr ≥ 2.35). The Kaplan–Meier analysis showed a mos of 39.1 months in the low-risk group and 14.4 months in the high-risk group (p < 0.001). Multivariate Cox regression on the nlr estimated a hazard ratio of 3.08 (p = 0.01). Survival analysis in each risk subgroup, considering the history of metastasectomy, was also performed. In the low-risk group, mos was longer for patients undergoing metastasectomy than for those not undergoing the procedure (95.2 months vs. 22.6 months, p = 0.05). In the high-risk group, mos was not statistically different for patients undergoing or not undergoing metastasectomy (24.3 months vs. 12.7 months, p = 0.08). Conclusions Our real-world data analysis of nlr in patients with mcrc confirmed that this biomarker is useful in predicting survival. It also suggests that nlr is an effective tool to choose first-line treatment and to predict the benefit of metastasectomy.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Zhicheng Zhuang ◽  
Huajun Cai ◽  
Hexin Lin ◽  
Bingjie Guan ◽  
Yong Wu ◽  
...  

Background. Pyroptosis has been confirmed as a type of inflammatory programmed cell death in recent years. However, the prognostic role of pyroptosis in colon cancer (CC) remains unclear. Methods. Dataset TCGA-COAD which came from the TCGA portal was taken as the training cohort. GSE17538 from the GEO database was treated as validation cohorts. Differential expression genes (DEGs) between normal and tumor tissues were confirmed. Patients were classified into two subgroups according to the expression characteristics of pyroptosis-related DEGs. The LASSO regression analysis was used to build the best prognostic signature, and its reliability was validated using Kaplan–Meier, ROC, PCA, and t-SNE analyses. And a nomogram based on the multivariate Cox analysis was developed. The enrichment analysis was performed in the GO and KEGG to investigate the potential mechanism. In addition, we explored the difference in the abundance of infiltrating immune cells and immune microenvironment between high- and low-risk groups. And we also predicted the association of common immune checkpoints with risk scores. Finally, we verified the expression of the pyroptosis-related hub gene at the protein level by immunohistochemistry. Results. A total of 23 pyroptosis-related DEGs were identified in the TCGA cohort. Patients were classified into two molecular clusters (MC) based on DEGs. Kaplan–Meier survival analysis indicated that patients with MC1 represented significantly poorer OS than patients with MC2. 13 overall survival- (OS-) related DEGs in MCs were used to construct the prognostic signature. Patients in the high-risk group exhibited poorer OS compared to those in the low-risk group. Combined with the clinical features, the risk score was found to be an independent prognostic factor of CC patients. The above results are verified in the external dataset GSE17538. A nomogram was established and showed excellent performance. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that the varied prognostic performance between high- and low-risk groups may be related to the immune response mediated by local inflammation. Further analysis showed that the high-risk group has stronger immune cell infiltration and lower tumor purity than the low-risk group. Through the correlation between risk score and immune checkpoint expression, T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3) was predicted as a potential therapeutic target for the high-risk group. Conclusion. The 13-gene signature was associated with OS, immune cells, tumor purity, and immune checkpoints in CC patients, and it could provide the basis for immunotherapy and predicting prognosis and help clinicians make decisions for individualized treatment.


2021 ◽  
Author(s):  
Fang Wen ◽  
Xiaoxue Chen ◽  
Wenjie Huang ◽  
Shuai Ruan ◽  
Suping Gu ◽  
...  

Abstract Background: The diagnosis rate and mortality of gastric cancer (GC) are among the highest in the global, so it is of great significance to predict the survival time of GC patients. Ferroptosis and iron-metabolism make a critical impact on tumor development and are closely linked to the treatment of cancer and the prognosis of patients. However, the predictive value of the genes involved in ferroptosis and iron-metabolism in GC and their effects on immune microenvironment remain to be further clarified.Methods: In this study, the RNA sequence information and general clinical indicators of GC patients were acquired from the public databases. We first systematically screen out 134 DEGs and 13 PRGs related to ferroptosis and iron-metabolism. Then, we identified six PRDEGs (GLS2, MTF1, SLC1A5, SP1, NOX4, and ZFP36) based on the LASSO-penalized Cox regression analysis. The 6-gene prognostic risk model was established in the TCGA cohort and the GC patients were separated into the high- and the low-risk groups through the risk score median value. GEO cohort was used for verification. The expression of PRDEGs was verified by quantitative QPCR.Results: Our study demonstrated that patients in the low-risk group had a higher survival probability compared with those in high-risk group. In addition, univariate and multivariate Cox regression analyses confirmed that the risk score was an independent prediction parameter. The ROC curve analysis and nomogram manifested that the risk model had the high predictive ability and was more sensitive than general clinical features. Furthermore, compared with the high-risk group, the low-risk group had higher TMB and a longer 5-year survival period. In the immune microenvironment of GC, there were also differences in immune function and highly infiltrated immune cells between the two risk groups.Conclusions: The prognostic risk model based on the six genes associated with ferroptosis and iron-metabolism has a good performance for predicting the prognosis of patients with GC. The treatment of cancer by inducing tumor ferroptosis or mediating tumor iron-metabolism, especially combined with immunotherapy, provides a new possibility for individualized treatment of GC patients.


Sign in / Sign up

Export Citation Format

Share Document