scholarly journals Resveratrol Modulates the Gut-Brain Axis: Focus on Glucagon-Like Peptide-1, 5-HT, and Gut Microbiota

2020 ◽  
Vol 12 ◽  
Author(s):  
Ji Yeon Chung ◽  
Jae-Ho Jeong ◽  
Juhyun Song

Resveratrol is a natural polyphenol that has anti-aging and anti-inflammatory properties against stress condition. It is reported that resveratrol has beneficial functions in various metabolic and central nervous system (CNS) diseases, such as obesity, diabetes, depression, and dementia. Recently, many researchers have emphasized the connection between the brain and gut, called the gut–brain axis, for treating both CNS neuropathologies and gastrointestinal diseases. Based on previous findings, resveratrol is involved in glucagon-like peptide 1 (GLP-1) secreted by intestine L cells, the patterns of microbiome in the intestine, the 5-hydroxytryptamine (5-HT) level, and CNS inflammation. Here, we review recent evidences concerning the relevance and regulatory function of resveratrol in the gut–brain axis from various perspectives. Here, we highlight the necessity for further study on resveratrol's specific mechanism in the gut–brain axis. We present the potential of resveratrol as a natural therapeutic substance for treating both neuropathology and gastrointestinal dysfunction.

Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1118
Author(s):  
Jan Homolak ◽  
Ana Babic Perhoc ◽  
Ana Knezovic ◽  
Jelena Osmanovic Barilar ◽  
Melita Salkovic-Petrisic

The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant brain state (IRBS) and Alzheimer’s disease (AD). Gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R) exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals. Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress. TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls. In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in the STZ-icv model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Liu ◽  
Lizhen Wang ◽  
Donghui Pan ◽  
Mingzhu Li ◽  
Yaoqi Li ◽  
...  

AbstractLight therapy has been accepted as a promising therapeutic choice for depression. Positron emission tomography (PET) combined with specific radiotracers has great benefits for revealing pathogenesis and developing therapeutics. This study aimed to investigate the influences of light therapy on microglial activation and glucagon-like peptide-1 receptor (GLP-1R) expression in the brain of depressive rats using [18F]DPA-714 and [18F]exendin-4 PET. The results showed that chronic unpredictable mild stress (CUMS)-induced depressive rats had poorer performance in behavioral tests compared to normal rats (p < 0.05) and the depressive-like behavior could be ameliorated by light therapy. Besides, depressive rats had significantly higher [18F]DPA-714 uptake and lower [18F]FDG uptake compare to normal rats in 11 and 9 regions of interest (ROIs) of the brain, respectively (p < 0.05). After 5 weeks of light therapy, higher [18F]FDG and [18F]exendin-4 uptake was observed in most ROIs of light therapy-treated depressive rats compared to untreated depressive rats (p < 0.05) and no significant differences existed in [18F]DPA-714 uptake between the two groups. This study demonstrated that light therapy can ameliorate depressive-like behavior, improve glucose metabolism, and halt the decline of brain GLP-1R expression of depressive rats, but have no effects on microglial activation caused by CUMS. Besides, this study validated that [18F]DPA-714 and [18F]exendin-4 PET have the potential for noninvasive evaluation of microglial activation and GLP-1R expression in the brain of depression.


Diabetes ◽  
2018 ◽  
Vol 68 (1) ◽  
pp. 15-17 ◽  
Author(s):  
Derek Daniels ◽  
Elizabeth G. Mietlicki-Baase

Author(s):  
S Yoshimoto ◽  
M Hirota ◽  
C Ohboshi ◽  
K Shima

Acid-urea extract of rat brain was examined by glucagon-like peptide-1 (GLP-1) specific radioimmunoassay. A single peak was observed which co-eluted with GLP-1(7–36)amide on gel filtration and anion exchange chromatography. In contrast, GLP-1(1–37) was not detected under our experimental conditions. The fact that GLP-1 (7–36)amide, but not GLP-1(1–37), was present in rat brain suggests that preproglucagon was processed in the brain in the same manner as in the intestine and not as in the pancreas.


Author(s):  
David J. Nutt ◽  
Liam J. Nestor

Many of the same behavioural and brain disturbances observed in addiction are also seen in obesity and binge-eating disorder. This suggests that there are shared neural substrates between substance addiction and compulsive food consumption. Food intake and appetite are regulated by numerous appetite hormones that exert their effects through brain systems involved in reward sensitivity, stress, impulsivity, and compulsivity. There is now emerging evidence that appetite hormones (e.g. ghrelin, glucagon-like peptide-1, orexin) can modulate addictive behaviours (e.g. craving) and the intake of alcohol and drugs. Therefore, there is an emerging shift into a new field of testing drugs that affect appetite hormones and their receptors in the brain, and their use in regulating the brain mechanisms that lead to relapse in addiction disorders.


Neurosurgery ◽  
2015 ◽  
Vol 78 (4) ◽  
pp. E596-E600 ◽  
Author(s):  
Makoto Nakamura ◽  
Amir Samii ◽  
Josef M. Lang ◽  
Friedrich Götz ◽  
Madjid Samii ◽  
...  

Abstract BACKGROUND AND IMPORTANCE: Local biological drug delivery in the brain is an innovative field of medicine that developed rapidly in recent years. Our report illustrates a unique case of de novo development of a cerebral arteriovenous malformation (AVM) after implantation of genetically modified allogeneic mesenchymal stem cells in the brain. CLINICAL PRESENTATION: A 50-year-old man was included in a prospective clinical study (study ID number CM GLP-1/01, 2007-004516-31) investigating a novel neuroprotective approach in stroke patients to prevent perihematomal neuronal damage. In this study, alginate microcapsules containing genetically modified allogeneic mesenchymal stem cells producing the neuroprotective glucagon-like peptide-1 (GLP-1) were implanted. Three years later, the patient presented with aphasia and a focal seizure due to a new left frontal intracerebral hemorrhage. Angiography revealed a de novo left frontal AVM. CONCLUSION: The development of an AVM within a period of 3 years after implantation of the glucagon-like peptide-1–secreting mesenchymal stem cells suggests a possible relationship. This case exemplifies that further investigations are necessary to assess the safety of genetically modified cell lines for local biological drug delivery in the brain.


2007 ◽  
Vol 193 (2) ◽  
pp. 259-267 ◽  
Author(s):  
Carmen Sanz ◽  
Isabel Roncero ◽  
Patricia Vázquez ◽  
M Angeles Navas ◽  
Enrique Blázquez

In an attempt to study the role of glucokinase (GK) and the effects of glucose and peptides on GK gene expression and on the activity of this enzyme in the hypothalamus, we used two kinds of biological models: hypothalamic GT1-7 cells and rat hypothalamic slices. The expression of the GK gene in GT1-7 cells was reduced by insulin (INS) and was not modified by different glucose concentrations, while GK enzyme activities were significantly reduced by the different peptides. Interestingly, a distinctive pattern of GK activities between the ventromedial hypothalamus (VMH) and lateral hypothalamus (LH) were found, with higher enzyme activities in the VMH as the glucose concentrations rose, while LH enzyme activities decreased at 2.8 and 20 mM glucose, the latter effect being prevented by incubation with INS. These effects were produced only by d-glucose and the modifications found were due to GK, but not to other hexokinases. In addition, GK activities in the VMH and the LH were reduced by glucagon-like peptide 1, leptin, orexin B, INS, and neuropeptide Y (NPY), but this effect was only statistically significant for NPY in LH. Our results indicate that the effects of both glucose and peptides occur on GK enzyme activities rather than on GK gene transcription. Moreover, the effects of glucose and INS on GK activity suggest that in the brain GK behaves in a manner opposite to that in the liver, which might facilitate its role in glucose sensing. Finally, hypothalamic slices seem to offer a good physiological model to discriminate the effects between different areas.


2016 ◽  
Vol 311 (1) ◽  
pp. R115-R123 ◽  
Author(s):  
Fredrik Anesten ◽  
Marie K. Holt ◽  
Erik Schéle ◽  
Vilborg Pálsdóttir ◽  
Frank Reimann ◽  
...  

Neuronal circuits in the hypothalamus and hindbrain are of importance for control of food intake, energy expenditure, and fat mass. We have recently shown that treatment with exendin-4 (Ex-4), an analog of the proglucagon-derived molecule glucagon-like peptide 1 (GLP-1), markedly increases mRNA expression of the cytokine interleukin-6 (IL-6) in the hypothalamus and hindbrain and that this increase partly mediates the suppression of food intake and body weight by Ex-4. Endogenous GLP-1 in the central nervous system (CNS) is produced by preproglucagon (PPG) neurons of the nucleus of the solitary tract (NTS) in the hindbrain. These neurons project to various parts of the brain, including the hypothalamus. Outside the brain, IL-6 stimulates GLP-1 secretion from the gut and pancreas. In this study, we aim to investigate whether IL-6 can affect GLP-1-producing PPG neurons in the nucleus of the solitary tract (NTS) in mouse hindbrain via the ligand binding part of the IL-6 receptor, IL-6 receptor-α (IL-6Rα). Using immunohistochemistry, we found that IL-6Rα was localized on PPG neurons of the NTS. Recordings of these neurons in GCaMP3/GLP-1 reporter mice showed that IL-6 enhances cytosolic Ca2+ concentration in neurons capable of expressing PPG. We also show that the Ca2+ increase originates from the extracellular space. Furthermore, we found that IL-6Rα was localized on cells in the caudal hindbrain expressing immunoreactive NeuN (a neuronal marker) or CNP:ase (an oligodendrocyte marker). In summary, IL-6Rα is present on PPG neurons in the NTS, and IL-6 can stimulate these cells by increasing influx of Ca2+ to the cytosol from the extracellular space.


Author(s):  
Anita Kabahizi ◽  
Briana Wallace ◽  
Linh Lieu ◽  
Dominic Chau ◽  
Yanbin Dong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document