scholarly journals The Role of Glucagon-Like Peptide 1 (GLP1) in Type 3 Diabetes: GLP-1 Controls Insulin Resistance, Neuroinflammation and Neurogenesis in the Brain

2017 ◽  
Vol 18 (11) ◽  
pp. 2493 ◽  
Author(s):  
Choon Bae ◽  
Juhyun Song
2007 ◽  
Vol 193 (2) ◽  
pp. 259-267 ◽  
Author(s):  
Carmen Sanz ◽  
Isabel Roncero ◽  
Patricia Vázquez ◽  
M Angeles Navas ◽  
Enrique Blázquez

In an attempt to study the role of glucokinase (GK) and the effects of glucose and peptides on GK gene expression and on the activity of this enzyme in the hypothalamus, we used two kinds of biological models: hypothalamic GT1-7 cells and rat hypothalamic slices. The expression of the GK gene in GT1-7 cells was reduced by insulin (INS) and was not modified by different glucose concentrations, while GK enzyme activities were significantly reduced by the different peptides. Interestingly, a distinctive pattern of GK activities between the ventromedial hypothalamus (VMH) and lateral hypothalamus (LH) were found, with higher enzyme activities in the VMH as the glucose concentrations rose, while LH enzyme activities decreased at 2.8 and 20 mM glucose, the latter effect being prevented by incubation with INS. These effects were produced only by d-glucose and the modifications found were due to GK, but not to other hexokinases. In addition, GK activities in the VMH and the LH were reduced by glucagon-like peptide 1, leptin, orexin B, INS, and neuropeptide Y (NPY), but this effect was only statistically significant for NPY in LH. Our results indicate that the effects of both glucose and peptides occur on GK enzyme activities rather than on GK gene transcription. Moreover, the effects of glucose and INS on GK activity suggest that in the brain GK behaves in a manner opposite to that in the liver, which might facilitate its role in glucose sensing. Finally, hypothalamic slices seem to offer a good physiological model to discriminate the effects between different areas.


2009 ◽  
Vol 296 (1) ◽  
pp. R51-R56 ◽  
Author(s):  
Lori Asarian

To investigate the role of serotonin 2C receptors (2CR), which are expressed only in the central nervous system, in the satiating actions of the gut peptides CCK and glucagon-like peptide 1 (GLP-1), we examined 1) the effect of null mutations of serotonin 2CR (2CR KO) on the eating-inhibitory potencies of dark-onset intraperitoneal injections of 0.9, 1.7, or 3.5 nmol/kg (1, 2, or 4 μg/kg) CCK and 100, 200, and 400 nmol/kg (33, 66, or 132 μg/kg) GLP-1, and 2) the effects of intraperitoneal injections of 1.7 nmol//kg CCK and 100 nmol/kg GLP-1 on neuronal activation in the brain, as measured by c-Fos expression. All CCK and GLP-1 doses decreased 30-min food intake in wild-type (WT) mice, but none of them did in 2CR KO mice. CCK increased the number of cells expressing c-Fos in the nucleus tractus solitarii (NTS) of WT, but not 2CR KO mice. CCK induced similar degrees of c-Fos expression in the paraventricular (PVN) and arcuate (Arc) nuclei of the hypothalamus of both genotypes. GLP-1, on the other hand, increased c-Fos expression similarly in the NTS of both genotypes and increased c-Fos expression more in the PVN and Arc of 2CR KO mice, but not WT mice. These results indicate that serotonin signaling via serotonin 2CR is necessary for the full satiating effects of CCK and GLP-1. In addition, they suggest that the satiating effects of the two peptides are mediated by different neural mechanisms.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1118
Author(s):  
Jan Homolak ◽  
Ana Babic Perhoc ◽  
Ana Knezovic ◽  
Jelena Osmanovic Barilar ◽  
Melita Salkovic-Petrisic

The gastrointestinal system may be involved in the etiopathogenesis of the insulin-resistant brain state (IRBS) and Alzheimer’s disease (AD). Gastrointestinal hormone glucagon-like peptide-1 (GLP-1) is being explored as a potential therapy as activation of brain GLP-1 receptors (GLP-1R) exerts neuroprotection and controls peripheral metabolism. Intracerebroventricular administration of streptozotocin (STZ-icv) is used to model IRBS and GLP-1 dyshomeostasis seems to be involved in the development of neuropathological changes. The aim was to explore (i) gastrointestinal homeostasis in the STZ-icv model (ii) assess whether the brain GLP-1 is involved in the regulation of gastrointestinal redox homeostasis and (iii) analyze whether brain-gut GLP-1 axis is functional in the STZ-icv animals. Acute intracerebroventricular treatment with exendin-3(9-39)amide was used for pharmacological inhibition of brain GLP-1R in the control and STZ-icv rats, and oxidative stress was assessed in plasma, duodenum and ileum. Acute inhibition of brain GLP-1R increased plasma oxidative stress. TBARS were increased, and low molecular weight thiols (LMWT), protein sulfhydryls (SH), and superoxide dismutase (SOD) were decreased in the duodenum, but not in the ileum of the controls. In the STZ-icv, TBARS and CAT were increased, LMWT and SH were decreased at baseline, and no further increment of oxidative stress was observed upon central GLP-1R inhibition. The presented results indicate that (i) oxidative stress is increased in the duodenum of the STZ-icv rat model of AD, (ii) brain GLP-1R signaling is involved in systemic redox regulation, (iii) brain-gut GLP-1 axis regulates duodenal, but not ileal redox homeostasis, and iv) brain-gut GLP-1 axis is dysfunctional in the STZ-icv model.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yu Liu ◽  
Lizhen Wang ◽  
Donghui Pan ◽  
Mingzhu Li ◽  
Yaoqi Li ◽  
...  

AbstractLight therapy has been accepted as a promising therapeutic choice for depression. Positron emission tomography (PET) combined with specific radiotracers has great benefits for revealing pathogenesis and developing therapeutics. This study aimed to investigate the influences of light therapy on microglial activation and glucagon-like peptide-1 receptor (GLP-1R) expression in the brain of depressive rats using [18F]DPA-714 and [18F]exendin-4 PET. The results showed that chronic unpredictable mild stress (CUMS)-induced depressive rats had poorer performance in behavioral tests compared to normal rats (p < 0.05) and the depressive-like behavior could be ameliorated by light therapy. Besides, depressive rats had significantly higher [18F]DPA-714 uptake and lower [18F]FDG uptake compare to normal rats in 11 and 9 regions of interest (ROIs) of the brain, respectively (p < 0.05). After 5 weeks of light therapy, higher [18F]FDG and [18F]exendin-4 uptake was observed in most ROIs of light therapy-treated depressive rats compared to untreated depressive rats (p < 0.05) and no significant differences existed in [18F]DPA-714 uptake between the two groups. This study demonstrated that light therapy can ameliorate depressive-like behavior, improve glucose metabolism, and halt the decline of brain GLP-1R expression of depressive rats, but have no effects on microglial activation caused by CUMS. Besides, this study validated that [18F]DPA-714 and [18F]exendin-4 PET have the potential for noninvasive evaluation of microglial activation and GLP-1R expression in the brain of depression.


2000 ◽  
Vol 279 (5) ◽  
pp. G925-G930 ◽  
Author(s):  
G. Cuche ◽  
J. C. Cuber ◽  
C. H. Malbert

The aim of this study was to evaluate the nervous and humoral pathways involved in short-chain fatty acid (SCFA)-induced ileal brake in conscious pigs. The role of extrinsic ileal innervation was evaluated after SCFA infusion in innervated and denervated Babkin's ileal loops, and gastric motility was measured with strain gauges. Peptide YY (PYY) and glucagon-like peptide-1 (GLP-1) concentrations were evaluated in both situations. The possible involvement of absorbed SCFA was tested by using intravenous infusion of acetate. Ileal SCFA infusion in the intact terminal ileum decreased the amplitude of distal and terminal antral contractions (33 ± 1.2 vs. 49 ± 1.2% of the maximal amplitude recorded before infusion) and increased their frequency (1.5 ± 0.11 vs. 1.3 ± 0.10/min). Similar effects were observed during SCFA infusion in ileal innervated and denervated loops (amplitude, 35 ± 1.0 and 34 ± 0.8 vs. 47 ± 1.3 and 43 ± 1.2%; frequency, 1.4 ± 0.07 and 1.6 ± 0.06 vs. 1.1 ± 0.14 and 1.0 ± 0.12/min). Intravenous acetate did not modify the amplitude and frequency of antral contractions. PYY but not GLP-1 concentrations were increased during SCFA infusion in innervated and denervated loops. In conclusion, ileal SCFA inhibit distal gastric motility by a humoral pathway involving the release of an inhibiting factor, which is likely PYY.


2017 ◽  
Vol 131 (24) ◽  
pp. 2901-2910 ◽  
Author(s):  
Eleni Rebelos ◽  
Brenno Astiarraga ◽  
Roberto Bizzotto ◽  
Andrea Mari ◽  
Maria Laura Manca ◽  
...  

Previous work has shown that potentiation of insulin release is impaired in non-diabetic insulin resistance; we tested the hypothesis that this defect may be related to altered glucagon-like peptide-1 (GLP-1) release. On consecutive days, 82 non-diabetic individuals, classified as insulin sensitive (IS, n=41) or insulin resistant (IR, n=41) by the euglycaemic clamp, were given two sequential mixed meals with standard (75 g, LCD) or double (150 g, HCD) carbohydrate content. Plasma glucose, insulin, C-peptide, non-esterified fatty acids (NEFA) and GLP-1 concentrations were measured; β-cell function (glucose sensitivity and potentiation) was resolved by mathematical modelling. Fasting GLP-1 levels were higher in IR than IS (by 15%, P=0.006), and reciprocally related to insulin sensitivity after adjustment for sex, age, fat mass, fasting glucose or insulin concentrations. Mean postprandial GLP-1 responses were tightly correlated with fasting GLP-1, were higher for the second than the first meal, and higher in IR than IS subjects but only with LCD. In contrast, incremental GLP-1 responses were higher during (i) the second than the first meal, (ii) on HCD than LCD, and (iii) significantly smaller in IR than IS independently of meal and load. Potentiation of insulin release was markedly reduced in IR vs IS across meal and carbohydrate loading. In the whole dataset, incremental GLP-1 was directly related to potentiation, and both were inversely related to mean NEFA concentrations. We conclude that (a) raised GLP-1 tone may be inherently linked with a reduced GLP-1 response and (b) defective post-meal GLP-1 response may be one mechanism for impaired potentiation of insulin release in insulin resistance.


Sign in / Sign up

Export Citation Format

Share Document