scholarly journals Whole-Brain Afferent Inputs to the Caudate Nucleus, Putamen, and Accumbens Nucleus in the Tree Shrew Striatum

2021 ◽  
Vol 15 ◽  
Author(s):  
Rong-Jun Ni ◽  
Yu-Mian Shu ◽  
Tao Li ◽  
Jiang-Ning Zhou

Day-active tree shrews have a well-developed internal capsule (ic) that clearly separates the caudate nucleus (Cd) and putamen (Pu). The striatum consists of the Cd, ic, Pu, and accumbens nucleus (Acb). Here, we characterized the cytoarchitecture of the striatum and the whole-brain inputs to the Cd, Pu, and Acb in tree shrews by using immunohistochemistry and the retrograde tracer Fluoro-Gold (FG). Our data show the distribution patterns of parvalbumin (PV), nitric oxide synthase (NOS), calretinin (CR), and tyrosine hydroxylase (TH) immunoreactivity in the striatum of tree shrews, which were different from those observed in rats. The Cd and Pu mainly received inputs from the thalamus, motor cortex, somatosensory cortex, subthalamic nucleus, substantia nigra, and other cortical and subcortical regions, whereas the Acb primarily received inputs from the anterior olfactory nucleus, claustrum, infralimbic cortex, thalamus, raphe nucleus, parabrachial nucleus, ventral tegmental area, and so on. The Cd, Pu, and Acb received inputs from different neuronal populations in the ipsilateral (60, 67, and 63 brain regions, respectively) and contralateral (23, 20, and 36 brain regions, respectively) brain hemispheres. Overall, we demonstrate that there are species differences between tree shrews and rats in the density of PV, NOS, CR, and TH immunoreactivity in the striatum. Additionally, we mapped for the first time the distribution of whole-brain input neurons projecting to the striatum of tree shrews with FG injected into the Cd, Pu, and Acb. The similarities and differences in their brain-wide input patterns may provide new insights into the diverse functions of the striatal subregions.

2021 ◽  
Author(s):  
E. Caitlin Lloyd ◽  
Karin E. Foerde ◽  
Alexandra F. Muratore ◽  
Natalie Aw ◽  
David Semanek ◽  
...  

AbstractBackgroundAnorexia nervosa (AN) is characterised by disturbances in cognition and behaviour surrounding eating and weight, which may relate to the structural connectivity of the brain that supports effective information processing and transfer.MethodsDiffusion-weighted MRI data acquired from female patients with AN (n = 148) and female healthy controls (HC; n = 119), aged 12-40 years, were combined across five cross-sectional studies. Probabilistic tractography was completed, and full cortex connectomes describing streamline counts between 84 brain regions generated and harmonised. The network-based statistic tested between-group differences in connectivity strength of brain subnetworks. Whole-brain connectivity of brain regions was indexed using graph theory tools, and compared between groups using multiple linear regression. Associations between structural connectivity variables that differed between groups, and illness severity markers, were explored amongst AN patients using multiple linear regression. Statistical models included age, motion, and study as covariates.OutcomesThe network-based statistic indicated AN patients, relative to HC, had reduced connectivity in a network comprising subcortical regions and greater connectivity between frontal cortical regions (p < 0.05, FWE corrected). Graph theory analyses supported reduced connectivity of subcortical regions, and greater connectivity of left occipital cortex, in patients relative to HC (p < 0.05, permutation corrected). Reduced subcortical network connectivity was associated with lower BMI among the AN group.InterpretationStructural differences in subcortical and cortical networks are present in AN, and may reflect illness mechanisms.FundingGlobal Foundation for Eating Disorders; Klarman Family Foundation; Translating Duke Health Initiative; NIMH (MH099388, MH076195, MH110445, MH105452, MH079397, MH113737).


2018 ◽  
Author(s):  
Bonnie Alexander ◽  
Wai Yen Loh ◽  
Lillian G. Matthews ◽  
Andrea L. Murray ◽  
Chris Adamson ◽  
...  

AbstractOur recently published M-CRIB atlas comprises 100 neonatal brain regions including 68 compatible with the widely-used Desikan-Killiany adult cortical atlas. A successor to the Desikan-Killiany atlas is the Desikan-Killiany-Tourville atlas, in which some regions with unclear boundaries were removed, and many existing boundaries were revised to conform to clearer landmarks in sulcal fundi. Our first aim here was to modify cortical M-CRIB regions to comply with the Desikan-Killiany-Tourville protocol, in order to offer: a) compatibility with this adult cortical atlas, b) greater labelling accuracy due to clearer landmarks, and c) optimisation of cortical regions for integration with surface-based infant parcellation pipelines. Secondly, we aimed to update subcortical regions in order to offer greater compatibility with subcortical segmentations produced in FreeSurfer. Data utilized were the T2-weighted MRI scans in our M-CRIB atlas, for ten healthy neonates (postmenstrual age at MRI 40-43 weeks, 4 female), and corresponding parcellated images. Edits were performed on the parcellated images in volume space using ITK-SNAP. Cortical updates included deletion of frontal and temporal poles and ‘Banks STS’, and modification of boundaries of many other regions. Changes to subcortical regions included the addition of ‘ventral diencephalon’, and deletion of ‘subcortical matter’ labels. A detailed updated parcellation protocol was produced. The resulting whole-brain M-CRIB 2.0 atlas comprises 94 regions altogether. This atlas provides comparability with adult Desikan-Killiany-Tourville-labelled cortical data and FreeSurfer-labelled subcortical data, and is more readily adaptable for incorporation into surface-based neonatal parcellation pipelines. As such, it offers the ability to help facilitate a broad range of investigations into brain structure and function both at the neonatal time point and developmentally across the lifespan.


Author(s):  
J. P. Brunschwig ◽  
R. M. McCombs ◽  
R. Mirkovic ◽  
M. Benyesh-Melnick

A new virus, established as a member of the herpesvirus group by electron microscopy, was isolated from spontaneously degenerating cell cultures derived from the kidneys and lungs of two normal tree shrews. The virus was found to replicate best in cells derived from the homologous species. The cells used were a tree shrew cell line, T-23, which was derived from a spontaneous soft tissue sarcoma. The virus did not multiply or did so poorly for a limited number of passages in human, monkey, rodent, rabbit or chick embryo cells. In the T-23 cells, the virus behaved as members of the subgroup B of herpesvirus, in that the virus remained primarily cell associated.


2020 ◽  
Author(s):  
Avyarthana Dey ◽  
Kara Dempster ◽  
Michael Mackinley ◽  
Peter Jeon ◽  
Tushar Das ◽  
...  

Background:Network level dysconnectivity has been studied in positive and negative symptoms of schizophrenia. Conceptual disorganization (CD) is a symptom subtype which predicts impaired real-world functioning in psychosis. Systematic reviews have reported aberrant connectivity in formal thought disorder, a construct related to CD. However, no studies have investigated whole-brain functional correlates of CD in psychosis. We sought to investigate brain regions explaining the severity of CD in patients with first-episode psychosis (FEPs) compared with healthy controls (HCs).Methods:We computed whole-brain binarized degree centrality maps of 31 FEPs, 25 HCs and characterized the patterns of network connectivity in the two groups. In FEPs, we related these findings to the severity of CD. We also studied the effect of positive and negative symptoms on altered network connectivity.Results:Compared to HCs, reduced hubness of a right superior temporal gyrus (rSTG) cluster was observed in the FEPs. In patients exhibiting high CD, increased hubness of a medial superior parietal (mSPL) cluster was observed, compared to patients exhibiting low CD. These two regions were strongly correlated with CD scores but not with other symptom scores.Discussion:Our observations are congruent with previous findings of reduced but not increased hubness. We observed increased hubness of mSPL suggesting that cortical reorganization occurs to provide alternate routes for information transfer.Conclusion:These findings provide insight into the underlying neural processes mediating the presentation of symptoms in untreated FEP. A longitudinal tracking of the symptom course will be useful to assess the mechanisms underlying these compensatory changes.


2015 ◽  
Vol 21 (3) ◽  
pp. 203-213 ◽  
Author(s):  
Jonathan C. Ipser ◽  
Gregory G. Brown ◽  
Amanda Bischoff-Grethe ◽  
Colm G. Connolly ◽  
Ronald J. Ellis ◽  
...  

AbstractHIV-associated cognitive impairments are prevalent, and are consistent with injury to both frontal cortical and subcortical regions of the brain. The current study aimed to assess the association of HIV infection with functional connections within the frontostriatal network, circuitry hypothesized to be highly vulnerable to HIV infection. Fifteen HIV-positive and 15 demographically matched control participants underwent 6 min of resting-state functional magnetic resonance imaging (RS-fMRI). Multivariate group comparisons of age-adjusted estimates of connectivity within the frontostriatal network were derived from BOLD data for dorsolateral prefrontal cortex (DLPFC), dorsal caudate and mediodorsal thalamic regions of interest. Whole-brain comparisons of group differences in frontostriatal connectivity were conducted, as were pairwise tests of connectivity associations with measures of global cognitive functioning and clinical and immunological characteristics (nadir and current CD4 count, duration of HIV infection, plasma HIV RNA). HIV – associated reductions in connectivity were observed between the DLPFC and the dorsal caudate, particularly in younger participants (<50 years, N=9). Seropositive participants also demonstrated reductions in dorsal caudate connectivity to frontal and parietal brain regions previously demonstrated to be functionally connected to the DLPFC. Cognitive impairment, but none of the assessed clinical/immunological variables, was also associated with reduced frontostriatal connectivity. In conclusion, our data indicate that HIV is associated with attenuated intrinsic frontostriatal connectivity. Intrinsic connectivity of this network may therefore serve as a marker of the deleterious effects of HIV infection on the brain, possibly via HIV-associated dopaminergic abnormalities. These findings warrant independent replication in larger studies. (JINS, 2015, 21, 1–11)


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
David S Liebeskind ◽  
Sunil A Sheth ◽  
Farhad Mehrkhani ◽  
Shahmir Kamalian ◽  
Fabien Scalzo ◽  
...  

Background: Numerous studies have compared CT with DWI ASPECTS, yet differences in timing between study acquisition may impart error or confound. We analyzed a large cohort of concurrently acquired CT and MRI to discern differences in regional variation in the ability to detect early ischemia. Methods: CT and DWI were acquired within 1 hour of each other during the first 8 hours after symptom onset and pooled from two large academic stroke centers for these analyses. Two raters independently scored CT ASPECTS and DWI ASPECTS at separate reading sessions. Modified DWI-ASPECTS (including only >20% per region) was also scored. Consensus readings were then utilized to compare regional ASPECTS across the 3 ASPECTS scales using the kappa statistic. Results: 136 patients underwent both CT and DWI within 1 hour of each other in the setting of acute ischemic stroke. Regional involvement on DWI included caudate in 57%, lentiform in 73%, insula in 69%, internal capsule in 24%, M1 in 34%, M2 in 49%, M3 in 36%, M4 in 21%, M5 in 57% and M6 in 41%. The agreement between CT and DWI varied by region, from caudate kappa 0.616 (0.484-0.748), to lentiform 0.602 (0.457-0.748), insula 0.690 (0.558-0.822), internal capsule 0.374 (0.189-0.559), M1 0.583 (0.435-0.731), M2 0.515 (0.389-0.641), M3 0.421 (0.275-0.568), M4 0.453 (0.262-0.644), M5 0.388 (0.268-0.507) and M6 0.500 (0.366-0.634). Modified DWI-ASPECTS (>20% per region) and CT demonstrated overall better agreement, yet still markedly varied by region. In general, CT and DWI ASPECTS reveal good agreement in subcortical structures, whereas very limited agreement is noted in several cortical ischemic regions. Modified-DWI ASPECTS improves cortical agreement, yet remains poor in the internal capsule. Conclusions: Detection of early ischemia varies considerably depending on the location or topography depicted with either CT or MRI. Deep subcortical regions are best detected with either modality, whereas cortical regions exhibit marked distinctions. Modified DWI ASPECTS improves agreement with CT ASPECTS in cortical regions.


2018 ◽  
Vol 90 (3) ◽  
pp. 313-319 ◽  
Author(s):  
Charlotte Rosso ◽  
Raphael Blanc ◽  
Julien Ly ◽  
Yves Samson ◽  
Stéphane Lehéricy ◽  
...  

ObjectivesThe relationship between stroke topography (ie, the regions damaged by the infarct) and functional outcome can aid clinicians in their decision-making at the acute and later stages. However, the side (left or right) of the stroke may also influence the identification of clinically relevant regions. We sought to determine which brain regions are associated with good functional outcome at 3 months in patients with left-sided and right-sided stroke treated by endovascular treatment using the diffusion-weighted imaging-Alberta Stroke Program Early CT Score (DWI-ASPECTS).MethodsPatients with ischaemic stroke (n = 405) were included from the ASTER trial and Pitié-Salpêtrière registry. Blinded readers rated ASPECTS on day 1 DWI. Stepwise logistic regression analyses were performed to identify the regions related to 3-month outcome in left (n = 190) and right (n = 215) sided strokes with the modified Rankin scale (0–2) as a binary independent variable and with the 10 regions-of-interest of the DWI-ASPECTS as independent variables.ResultsMedian National Institute of Health Stroke Scale (NIHSS) at baseline was 17 (IQR: 12–20), median age was 70 years (IQR: 58–80) and median day-one NIHSS 9 (IQR: 4–18). Not all brain regions have the same weight in predicting good outcome at 3 months; moreover, these regions depend on the affected hemisphere. In left-sided strokes, the multivariate analysis revealed that preservation of the caudate nucleus, the internal capsule and the cortical M5 region were independent predictors of good outcome. In right-sided strokes, the cortical M3 and M6 regions were found to be clinically relevant.ConclusionCortical non-motors areas related to outcome differed between left-sided and right-sided strokes. This difference might reflect the specialisation of the dominant and non-dominant hemispheres for language and attention, respectively. These results may influence decision-making at the acute and later stages.Trial registration numberNCT02523261.


1988 ◽  
Vol 8 (4) ◽  
pp. 502-512 ◽  
Author(s):  
Elsa J. Bartlett ◽  
Jonathan D. Brodie ◽  
Alfred P. Wolf ◽  
David R. Christman ◽  
Eugene Laska ◽  
...  

Positron emission tomography with 11C-2-deoxyglucose was used to determine the test-retest variability of regional cerebral glucose metabolism in 22 young normal right-handed men scanned twice in a 24-h period under baseline (resting) conditions. To assess the effects of scan order and time of day on variability, 12 subjects were scanned in the morning and afternoon of the same day (a.m.-p.m.) and 10 in the reverse order (p.m.-a.m.) with a night in between. The effect of anxiety on metabolism was also assessed. Seventy-three percent of the total subject group showed changes in whole brain metabolism from the first to the second measurement of 10% or less, with comparable changes in various cortical and subcortical regions. When a scaling factor was used to equate the whole brain metabolism in the two scans for each individual, the resulting average regional changes for each group were no mote than 1%. This suggests that the proportion of the whole brain metabolism utilized regionally is stable in a group of subjects over time. Both groups of subjects had lower morning than afternoon metabolism, but the differences were slight in the p.m.-a.m. group. One measure of anxiety (pulse at fun 1) was correlated with run 1 metabolism and with the percentage of change from run 1 to run 2. No significant run 2 correlations were observed. This is the first study to measure test-retest variability in cerebral glucose metabolism in a large sample of young normal subjects. It demonstrates that the deoxyglucose method yields low Intrasubject variability and high stability over a 24-h period.


2012 ◽  
Vol 24 (9) ◽  
pp. 1483-1493 ◽  
Author(s):  
Senthil Thillainadesan ◽  
Wei Wen ◽  
Lin Zhuang ◽  
John Crawford ◽  
Nicole Kochan ◽  
...  

ABSTRACTBackground: Previous studies using diffusion tensor imaging (DTI) have observed microstructural abnormalities in white matter regions in both Alzheimer's disease and mild cognitive impairment (MCI). The aim of this work was to examine the abnormalities in white matter and subcortical regions of MCI and its subtypes in a large, community-dwelling older aged cohortMethods: A community-based sample of 396 individuals without dementia underwent medical assessment, neuropsychiatric testing, and neuroimaging. Of these, 158 subjects were classified as MCI and 238 as cognitively normal (controls) based on international MCI consensus criteria. Regional fractional anisotropy (FA) and mean diffusivity (MD) measures were calculated from the DTI and compared between groups. The false discovery rate correction was applied for multiple testing.Results: Subjects with MCI did not have significant differences in FA compared with controls after correction for multiple testing, but had increased MD in the right putamen, right anterior limb of the internal capsule, genu and splenium of the corpus callosum, right posterior cingulate gyrus, left superior frontal gyrus, and right and left corona radiata. When compared with controls, changes in left anterior cingulate, left superior frontal gyrus, and right corona radiata were associated with amnestic MCI (aMCI), whereas changes in the right putamen, right anterior limb of the internal capsule, and the right corona radiata were associated with non-amnestic MCI (naMCI). On logistic regression, the FA values in the left superior gyrus and MD values in the anterior cingulate distinguished aMCI from naMCI.Conclusions: MCI is associated with changes in white matter and subcortical regions as seen on DTI. Changes in some anterior brain regions distinguish aMCI from naMCI.


2017 ◽  
Vol 23 (6) ◽  
pp. 594-600 ◽  
Author(s):  
FB Cabral ◽  
LH Castro-Afonso ◽  
GS Nakiri ◽  
LM Monsignore ◽  
SRC Fábio ◽  
...  

Purpose Hyper-attenuating lesions, or contrast staining, on a non-contrast brain computed tomography (NCCT) scan have been investigated as a predictor for hemorrhagic transformation after endovascular treatment of acute ischemic stroke (AIS). However, the association of hyper-attenuating lesions and final ischemic areas are poorly investigated in this setting. The aim of the present study was to assess correlations between hyper-attenuating lesions and final brain infarcted areas after thrombectomy for AIS. Methods Data from patients with AIS of the anterior circulation who underwent endovascular treatment were retrospectively assessed. Images of the brain NCCT scans were analyzed in the first hours and late after treatment. The hyper-attenuating areas were compared to the final ischemic areas using the Alberta Stroke Program Early CT Score (ASPECTS). Results Seventy-one of the 123 patients (65.13%) treated were included. The association between the hyper-attenuating region in the post-thrombectomy CT scan and final brain ischemic area were sensitivity (58.3% to 96.9%), specificity (42.9% to 95.6%), positive predictive values (71.4% to 97.7%), negative predictive values (53.8% to 79.5%), and accuracy values (68% to 91%). The highest sensitivity values were found for the lentiform (96.9%) and caudate nuclei (80.4%) and for the internal capsule (87.5%), and the lowest values were found for the M1 (58.3%) and M6 (66.7%) cortices. Conclusions Hyper-attenuating lesions on head NCCT scans performed after endovascular treatment of AIS may predict final brain infarcted areas. The prediction appears to be higher in the deep brain regions compared with the cortical regions.


Sign in / Sign up

Export Citation Format

Share Document