scholarly journals Establishing the Minimal Clinically Important Differences for Sagittal Hip Range of Motion in Chronic Stroke Patients

2021 ◽  
Vol 12 ◽  
Author(s):  
Agnieszka Guzik ◽  
Mariusz Drużbicki ◽  
Lidia Perenc ◽  
Andżelina Wolan-Nieroda ◽  
Andrea Turolla ◽  
...  

Many researchers have pointed out that decreased sagittal range of motion (ROM) in the affected hip joint is a common consequence of stroke, and it adversely affects walking performance and walking speed. Nevertheless, the minimal clinically important differences (MCID) in hip-related kinematic gait parameters post-stroke have not yet been determined. The present study aimed to define MCID values for hip ROM in the sagittal plane i.e., flexion–extension (FE), for the affected and unaffected sides at a chronic stage post-stroke. Fifty participants with hemiparesis due to stroke were enrolled for the study. Four statistical methods were used to calculate MCID. According to the anchor-based approach, the mean change in hip FE ROM achieved by the MCID group on the affected/unaffected side amounted to 5.81°/2.86° (the first MCID estimate). The distribution-based analyses established that the standard error of measurement in the no-change group amounted to 1.56°/1.04° (the second MCID estimate). Measurements based on the third method established that a change of 4.09°/0.61° in the hip ROM corresponded to a 1.85-point change in the Barthel Index. The optimum cutoff value, based on ROC curve analysis, corresponded to 2.9/2.6° of change in the hip sagittal ROM for the affected/unaffected side (the fourth MCID estimate). To our knowledge, this is the first study to use a comprehensive set of statistical methods to determine the MCID for hip sagittal ROM for the affected and unaffected sides at a chronic stage post-stroke. According to our findings, the MCID of the hip FE ROM for the affected side amounts to 5.81° and for the unaffected side to 2.86°, in patients with chronic stroke. This indicator is extremely important because it allows clinical practitioners to assess the effects of interventions administered to patients, and to interpret the significance of improvements in sagittal kinematic parameters of the hip; ultimately, it may facilitate the process of designing effective gait reeducation programs.

2020 ◽  
Vol 9 (10) ◽  
pp. 3305
Author(s):  
Agnieszka Guzik ◽  
Mariusz Drużbicki ◽  
Andżelina Wolan-Nieroda ◽  
Andrea Turolla ◽  
Pawel Kiper

The importance of knee sagittal kinematic parameters, as a predictor of walking performance in post-stroke gait has been emphasised by numerous researchers. However, no studies so far were designed to determine the minimal clinically important differences (MCID), i.e., the smallest difference in the relevant score for the kinematic gait parameters, which are perceived as beneficial for patients with stroke. Studies focusing on clinically important difference are useful because they can identify the clinical relevance of changes in the scores. The purpose of the study was to estimate the MCID for knee range of motion (ROM) in the sagittal plane for the affected and unaffected side at a chronic stage post-stroke. Fifty individuals were identified in a database of a rehabilitation clinic. We estimated MCID values using: an anchor-based method, distribution-based method, linear regression analysis and specification of the receiver operating characteristic (ROC) curve. In the anchor-based study, the mean change in knee flexion/extension ROM for the affected/unaffected side in the MCID group amounted to 8.48°/6.81° (the first MCID estimate). In the distribution-based study, the standard error of measurement for the no-change group was 1.86°/5.63° (the second MCID estimate). Method 3 analyses showed 7.71°/4.66° change in the ROM corresponding to 1.85-point change in the Barthel Index. The best cut-off point, determined with ROC curve, was the value corresponding to 3.9°/3.8° of change in the knee sagittal ROM for the affected/unaffected side (the fourth MCID estimate). We have determined that, in chronic stroke, MCID estimates of knee sagittal ROM for the affected side amount to 8.48° and for the unaffected side to 6.81°. These findings will assist clinicians and researchers in interpreting the significance of changes observed in kinematic sagittal plane parameters of the knee. The data are part of the following clinical trial: Australian New Zealand Clinical Trials Registry: ACTRN12617000436370


2020 ◽  
Vol 8 (4_suppl3) ◽  
pp. 2325967120S0022
Author(s):  
Emily A Sweeney ◽  
Morgan N Potter ◽  
Richard E Pimentel ◽  
James J Carollo ◽  
David R Howell

Background: Back pain is a common complaint among gymnasts. Gymnastics skills require large amounts of spine flexion, extension, rotation and compression. The combination of these movements in a repetitive fashion during gymnastics may contribute to the development of back pain. Gymnasts perform unique skills on various equipment and surfaces, which makes their movements difficult to evaluate using traditional movement analysis approaches. Hypothesis/Purpose: Our purpose was to measure gymnasts’ movement patterns in their native environment using wearable sensors. Specifically, we examined spine range of motion (ROM) during back walkovers (BWO) and back handsprings (BHS) on the floor and balance beam. We hypothesized that female youth gymnasts with a recent history of back pain would have larger spine ROM compared to gymnasts without back pain when performing these skills. Methods: Female artistic gymnasts ages 8 to 18 years in the Junior Olympic USA Gymnastics program participated in the study. We grouped gymnasts into two groups: those having back pain within the past 12 months and those with no reported back pain in the past 12 months. Gymnasts performed 3 repetitions of BWO and BHS on floor and balance beam while wearing APDM Opal V2 wearable sensors. A BWO requires a controlled bridge kickover while a BHS requires the athlete to jump backwards to her hands (Figure 1). Spine kinematics were then processed via Moveo Explorer. Valid spine sagittal plane maximums, minimums, and ROM of each skill repetition were compared between groups via Kruskal Wallis analysis of variance. Results: Seventeen participants (6 with back pain) completed BWOs and BHSs with acceptable sensor data. There were no demographic differences between the two groups for age, height, weight, competition level, or years of experience (p≥0.129, Table 1). During BWO skills, gymnasts with back pain had greater peak extension and greater ROM in the sagittal plane of the spine (p≤0.032, Figure 2). There were no differences between groups in peak extension, peak flexion, or ROM during BHS skills (p≥0.054, Figure 2). Conclusion: Gymnasts with a history of back pain had increased spinal motion when performing BWO skills. To perform a BWO, gymnasts must have higher levels of shoulder, spine, and hip flexibility, which may relate to back pain. This study suggests the need for future studies to evaluate if increased spinal motion during gymnastics is a contributing factor to the development of back pain. [Figure: see text][Table: see text][Figure: see text]


2021 ◽  
Vol 9 (6) ◽  
pp. 4051-4057
Author(s):  
Eram N Kazi ◽  
◽  
Suvarna S Ganvir ◽  

Background: Scapular Malalignment leads to functional incapacity in stroke patients. This malalignment hampers the functional mobility and stability of shoulder joint in stroke patients due to which there is reduced range of motion and hampers activities of daily living in stroke patients. So, to investigate the extent of scapular malalignment in patients with acute, chronic and sub-acute stroke. Methods: Four databases (PubMed, Google Scholar, Cochrane, Science Direct) were searched to identify eligible studies using the keywords Scapular Malalignment and Stroke. Only observational studies published in last 10 years (2010-2020) were included in this review. Results: Eight Studies, included in the review were conducted on patients with acute, sub-acute and chronic stage. The results showed that there is more of inferior angle tilting seen in patients with stroke and it increases with spasticity and alters functional mobility in patients with stroke. Discussion: All studies were consistent in using the appropriate tools for measurement of scapular malalignment. Literature showed scapular malalignment affects scapular balance angle, functional mobility of hand and range of motion in patients with acute, sub-acute and chronic stroke. Most of the literature includes patients with sub-acute and chronic stroke. There was no conflict of evidence observed among all articles. Conclusion: There is influence of Scapular malalignment on spasticity, duration of stroke, upper limb mobility, and range of motion in stroke patients. Scapular Malalignment is observed in acute, sub-acute and chronic rotation and there is more of inferior angle tilting and rotation of scapula observed. KEY WORDS: Scapular Malalignment, stroke.


2021 ◽  
Vol 12 ◽  
Author(s):  
Sanjana Rao ◽  
Meizhen Huang ◽  
Sun Gun Chung ◽  
Li-Qun Zhang

Objective: To assess the short-term effects of strenuous dynamic stretching of the elbow joint using an intelligent stretching device in chronic spastic stroke survivors.Methods: The intelligent stretching device was utilized to provide a single session of intensive stretching to the spastic elbow joint in the sagittal plane (i.e., elbow flexion and extension). The stretching was provided to the extreme range, safely, with control of the stretching velocity and torque to increase the joint range of motion (ROM) and reduce spasticity and joint stiffness. Eight chronic stroke survivors (age: 52.6 ± 8.2 years, post-stroke duration: 9.5 ± 3.6 years) completed a single 40-min stretching intervention session. Elbow passive and active ROM, strength, passive stiffness (quantifying the non-reflex component of spasticity), and instrumented tendon reflex test of the biceps tendon (quantifying the reflex component of the spasticity) were measured before and after stretching.Results: After stretching, there was a significant increase in passive ROM of elbow flexion (p = 0.021, r = 0.59) and extension (p = 0.026, r = 0.59). Also, elbow active ROM and the spastic elbow flexors showed a trend of increase in their strength.Conclusion: The intelligent stretching had a short-term positive influence on the passive movement ROM. Hence, intelligent stretching can potentially be used to repeatedly and regularly stretch spastic elbow joints, which subsequently helps to reduce upper limb impairments post-stroke.


2019 ◽  
pp. 121-131

Introduction: Breast cancer is the most common type of cancer among women in Brazil and in the worl. The surgical treatment procedure may cause severe morbidity in the upper limb homolateral to surgery, including the reduction of the range of motion, with consequent impairment of function. A physiotherapeutic approach has an important role in the recover range of motion and the functionality of these women, guaranteeing the occupational, domestestic, familiar and conjugated activities, and, in this way, also improving the quality of life. Objectives: To analyse chances in the shoulder's range of motion and the functional capacity of the upper limbs, promoted by the deep running procedure in women with late postoperative mastectomy. Methods: All the patients were submitted to an evaluation in the beginning and end of the treatment, including: goniometry of flexion, extension, abduction, adduction, internal and external rotation of the shoulder joint; and function capacity analysis in activities that involve the upper members by DASH questionnaire. The treatment protocol includes twelve sessions of deep running, realized twice a week, in deep pool, for 20-minute during six weeks. Results: Were submitted to treatment a total of 4 patients. Despite the improvement in the numerical values, statistically significant differences were not found on the range of movements and in the functional capacity of upper members before and after the deep running sessions in post-mastectomy women. Conclusion: Deep running had effects on the numerical values of range of movement and upper limb functionality in women in the late postoperative period of the mastectomy procedure, but without statistically significant differences.


2018 ◽  
Author(s):  
Claudia Nava ◽  
Patrizio Sale ◽  
Vittorio Leggero ◽  
Simona Ferrante ◽  
Cira Fundaro' ◽  
...  

BACKGROUND In recent years, different smartphone apps have been validated for joint goniometry, but none for goniometric assessment of gait after stroke. OBJECTIVE The aims of our work were to assess:1) to assess intra-rater reliability of an image-based goniometric app – DrGoniometer- in the measurement of the extension, flexion angles and range of motion of the knee during the hemiparetic gait of a stroke patient; (2) its validity comparing to the reference method (electrogoniometer) for flexion-extension excursion measurements; and the intra-rater agreement in the choice of the video frames. METHODS An left-hemiparetic inpatient following haemorrhagic stroke was filmed using the app while walking on a linear path. An electrogoniometer was fixed on the medial face of the affected knee in order to record the dynamic goniometry during gait. Twenty-one raters, blinded to measurements, were recruited to rate knee angle measurements from video acquired with DrGoniometer. Each rater repeated the same procedure twice, the second one at least one day after the first measure. RESULTS Results showed that flexion angle measurements are reliable (ICC95%=0.66, 0.34;0.85; SEM=4°), and adequately precise (CV=14%). Extension angles measurements demonstrated moderate reliability and higher degree of variation (ICC=0.51, 0.09;0.77; SEM 4°; CV=53%). ROM values were: ICC=0.23 (-0.21;0.60); CV=20%. Accuracy of DrGoniometer compared to the electrogoniometer was 7.3±4.7°. The selection of maximum extension frame revealed an accordance of 58% and 72% within a range of ±5 or ±10 frames, respectively; while the best flexion frame reported 86% of agreement for both range of 5 and 10 frames. CONCLUSIONS The results demonstrated moderate to good reliability concerning the maximum extension and flexion angles, while assessing ROM DrGoniometer showed poor intra-rater reliability. Flexion angle measurements seemed to be reliable according to ICC and SEM values and more precise with a limited dispersion of results DrGoniometer revealed a good accuracy in the measurement of range of motion. The agreement of the maximal extension frame was anyway adequate within 5 frames (59%) and noticeably increased within 10 frames (72%). In conclusion, DrGoniometer was found to be a valid and reliable method for assessing knee angles during hemiparetic gait. Further studies are necessary to investigate inter-rater reliability and confirm our results.


Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 365
Author(s):  
Cecilia Estrada-Barranco ◽  
Roberto Cano-de-la-Cuerda ◽  
Vanesa Abuín-Porras ◽  
Francisco Molina-Rueda

(1) Background: Observational scales are the most common methodology used to assess postural control and balance in people with stroke. The aim of this paper was to analyse the construct validity of the Postural Assessment Scale for Stroke Patients (PASS) scale in post-stroke patients in the acute, subacute, and chronic stroke phases. (2) Methods: Sixty-one post-stroke participants were enrolled. To analyze the construct validity of the PASS, the following scales were used: the Functional Ambulatory Category (FAC), the Wisconsin Gait Scale (WGS), the Barthel Index (BI) and the Functional Independence Measure (FIM). (3) Results: The construct validity of the PASS scale in patients with stroke at acute phase was moderate with the FAC (r = −0.791), WGS (r = −0.646) and FIM (r = −0.678) and excellent with the BI (r = 0.801). At subacute stage, the construct validity of the PASS scale was excellent with the FAC (r = 0.897), WGS (r = −0.847), FIM (r = −0.810) and BI (r = −0.888). At 6 and 12 months, the construct validity of the PASS with the FAC, WGS, FIM and BI was also excellent. (4) Conclusions: The PASS scale is a valid instrument to assess balance in post-stroke individuals especially, in the subacute and chronic phases (at 6 and 12 months).


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zewen Shi ◽  
Lin Shi ◽  
Xianjun Chen ◽  
Jiangtao Liu ◽  
Haihao Wu ◽  
...  

Abstract Background The superior facet arthroplasty is important for intervertebral foramen microscopy. To our knowledge, there is no study about the postoperative biomechanics of adjacent L4/L5 segments after different methods of S1 superior facet arthroplasty. To evaluate the effect of S1 superior facet arthroplasty on lumbar range of motion and disc stress of adjacent segment (L4/L5) under the intervertebral foraminoplasty. Methods Eight finite element models (FEMs) of lumbosacral vertebrae (L4/S) had been established and validated. The S1 superior facet arthroplasty was simulated with different methods. Then, the models were imported into Nastran software after optimization; 500 N preload was imposed on the L4 superior endplate, and 10 N⋅m was given to simulate flexion, extension, lateral flexion and rotation. The range of motion (ROM) and intervertebral disc stress of the L4-L5 spine were recorded. Results The ROM and disc stress of L4/L5 increased with the increasing of the proportions of S1 superior facet arthroplasty. Compared with the normal model, the ROM of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 2/5 from the apex to the base. The disc stress of L4/L5 significantly increased in most directions of motion when S1 superior facet formed greater than 3/5 from the ventral to the dorsal or 1/5 from the apex to the base. Conclusion In this study, the ROM and disc stress of L4/L5 were affected by the unilateral S1 superior facet arthroplasty. It is suggested that the forming range from the ventral to the dorsal should be less than 3/5 of the S1 upper facet joint. It is not recommended to form from apex to base. Level of evidence Level IV


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Kristina Traxler ◽  
Franz Schinabeck ◽  
Eva Baum ◽  
Edith Klotz ◽  
Barbara Seebacher

Abstract Background Large studies have shown that stroke is among the most relevant causes of acquired adult disability. Walking and balance impairment in stroke survivors often contribute to a restriction in daily activities and social participation. Task-oriented training (TOT) is an effective treatment strategy and manual therapy (MT) is used successfully to enhance ankle joint flexibility in this population. No study, however, has compared TOT against its combination with MT in a randomised controlled trial. Aims of this pilot study are therefore to explore the feasibility of a full-scale RCT using predefined feasibility criteria. Secondary aims are to explore the preliminary effects of specific TOT with a combined specific TOT-MT versus a control group in people post stroke. Methods This is a protocol of a 4-week prospective randomised controlled parallel pilot trial in people post stroke at the chronic stage with limited upper ankle joint mobility and an impairment in balance and mobility. At a German outpatient therapy centre using 1:1:1 allocation, 36 patients will be randomised into one of three groups: 15-min talocrural joint MT plus 30-min specific TOT (group A), 45-min specific TOT (group B), and controls (group C). Training will be goal-oriented including tasks that are based on daily activities and increased in difficulty utilising predefined progression criteria based on patients’ skill levels. Interventions will be provided face-to-face 2 times per week, for 4 weeks, in addition to 20-min concurrent x4 weekly home-based training sessions. Data will be collected by blinded assessors at baseline, post-intervention and 4-week follow-up. The primary outcome will be feasibility assessed by recruitment, retention and adherence rates, compliance, adverse events, falls and the acceptability of the intervention. Secondary outcomes will be walking speed, single and dual tasking functional mobility, ankle range of motion, disability and health-related quality of life. Discussion Feasibility provided, results from this study will be used to calculate the sample size of a larger randomised controlled trial to investigate the effects of specific TOT and specific TOT-MT compared to a post stroke control group. Trial registration German Clinical Trials Register, DRKS00023068. Registered on 21.09.2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00023068.


2021 ◽  
Vol 9 (7_suppl3) ◽  
pp. 2325967121S0013
Author(s):  
Manish Anand ◽  
Jed A. Diekfuss ◽  
Dustin R. Grooms ◽  
Alexis B. Slutsky-Ganesh ◽  
Scott Bonnette ◽  
...  

Background: Aberrant frontal and sagittal plane knee motor control biomechanics contribute to increased anterior cruciate ligament (ACL) injury risk. Emergent data further indicates alterations in brain function may underlie ACL injury high risk biomechanics and primary injury. However, technical limitations have limited our ability to assess direct linkages between maladaptive biomechanics and brain function. Hypothesis/Purpose: (1) Increased frontal plane knee range of motion would associate with altered brain activity in regions important for sensorimotor control and (2) increased sagittal plane knee motor control timing error would associate with altered activity in sensorimotor control brain regions. Methods: Eighteen female high-school basketball and volleyball players (14.7 ± 1.4 years, 169.5 ± 7 cm, 65.8 ± 20.5 kg) underwent brain functional magnetic resonance imaging (fMRI) while performing a bilateral, combined hip, knee, and ankle flexion/extension movements against resistance (i.e., leg press) Figure 1(a). The participants completed this task to a reference beat of 1.2 Hz during four movement blocks of 30 seconds each interleaved in between 5 rest blocks of 30 seconds each. Concurrent frontal and sagittal plane range of motion (ROM) kinematics were measured using an MRI-compatible single camera motion capture system. Results: Increased frontal plane ROM was associated with increased brain activity in one cluster extending over the occipital fusiform gyrus and lingual gyrus ( p = .003, z > 3.1). Increased sagittal plane motor control timing error was associated with increased brain activity in multiple clusters extending over the occipital cortex (lingual gyrus), frontal cortex, and anterior cingulate cortex ( p < .001, z > 3.1); see Figure 1 (b). Conclusion: The associations of increased knee frontal plane ROM and sagittal plane timing error with increased activity in regions that integrate visuospatial information may be indicative of an increased propensity for knee injury biomechanics that are, in part, driven by reduced spatial awareness and an inability to adequately control knee abduction motion. Increased activation in these regions during movement tasks may underlie an impaired ability to control movements (i.e., less neural efficiency), leading to compromised knee positions during more complex sports scenarios. Increased activity in regions important for cognition/attention associating with motor control timing error further indicates a neurologically inefficient motor control strategy. [Figure: see text]


Sign in / Sign up

Export Citation Format

Share Document