scholarly journals RPL6: A Key Molecule Regulating Zinc- and Magnesium-Bound Metalloproteins of Parkinson’s Disease

2021 ◽  
Vol 15 ◽  
Author(s):  
Athira Anirudhan ◽  
Paola Isabel Angulo-Bejarano ◽  
Prabu Paramasivam ◽  
Kalaivani Manokaran ◽  
S. Manjunath Kamath ◽  
...  

Parkinson’s disease (PD) is a progressive neurodegenerative disease with no definite molecular markers for diagnosis. Metal exposure may alter cellular proteins that contribute to PD. Exploring the cross-talk between metal and its binding proteins in PD could reveal a new strategy for PD diagnosis. We performed a meta-analysis from different PD tissue microarray datasets to identify differentially expressed genes (DEGs) common to the blood and brain. Among common DEGs, we extracted 280 metalloprotein-encoding genes to construct protein networks describing the regulation of metalloproteins in the PD blood and brain. From the metalloprotein network, we identified three important functional hubs. Further analysis shows 60S ribosomal protein L6 (RPL6), a novel intermediary molecule connecting the three hubs of the metalloproteins network. Quantitative real-time PCR analysis showed that RPL6 was downregulated in PD peripheral blood mononuclear cell (PBMC) samples. Simultaneously, trace element analysis revealed altered serum zinc and magnesium concentrations in PD samples. The Pearson’s correlation analysis shows that serum zinc and magnesium regulate the RPL6 gene expression in PBMC. Thus, metal-regulating RPL6 acts as an intermediary molecule connecting the three hubs that are functionally associated with PD. Overall our study explores the understanding of metal-mediated pathogenesis in PD, which provides a serum metal environment regulating the cellular gene expression that may light toward metal and gene expression-based biomarkers for PD diagnosis.

2020 ◽  
pp. 153537022096732
Author(s):  
Lille Kurvits ◽  
Freddy Lättekivi ◽  
Ene Reimann ◽  
Liis Kadastik-Eerme ◽  
Kristjan M Kasterpalu ◽  
...  

Transcriptomics in Parkinson’s disease offers insights into the pathogenesis of Parkinson’s disease but obtaining brain tissue has limitations. In order to bypass this issue, we profile and compare differentially expressed genes and enriched pathways (KEGG) in two peripheral tissues (blood and skin) of 12 Parkinson’s disease patients and 12 healthy controls using RNA-sequencing technique and validation with RT-qPCR. Furthermore, we compare our results to previous Parkinson’s disease post mortem brain tissue and blood results using the robust rank aggregation method. The results show no overlapping differentially expressed genes or enriched pathways in blood vs. skin in our sample sets (25 vs. 1068 differentially expressed genes with an FDR ≤ 0.05; 1 vs. 9 pathways in blood and skin, respectively). A meta-analysis from previous transcriptomic sample sets using either microarrays or RNA-Seq yields a robust rank aggregation list of cortical gene expression changes with 43 differentially expressed genes; a list of substantia nigra changes with 2 differentially expressed genes and a list of blood changes with 1 differentially expressed gene being statistically significant at FDR ≤ 0.05. In cortex 1, KEGG pathway was enriched, four in substantia nigra and two in blood. None of the differentially expressed genes or pathways overlap between these tissues. When comparing our previously published skin transcription analysis, two differentially expressed genes between the cortex robust rank aggregation and skin overlap. In this study, for the first time a meta-analysis is applied on transcriptomic sample sets in Parkinson’s disease. Simultaneously, it explores the notion that Parkinson’s disease is not just a neuronal tissue disease by exploring peripheral tissues. The comparison of different Parkinson’s disease tissues yields surprisingly few significant differentially expressed genes and pathways, suggesting that divergent gene expression profiles in distinct cell lineages, metabolic and possibly iatrogenic effects create too much transcriptomic noise for detecting significant signal. On the other hand, there are signs that point towards Parkinson’s disease-specific changes in non-neuronal peripheral tissues in Parkinson’s disease, indicating that Parkinson’s disease might be a multisystem disorder.


2021 ◽  
Author(s):  
Federico Ferraro ◽  
Christina Fevga ◽  
Vincenzo Bonifati ◽  
Wim Mandemakers ◽  
Ahmed Mahfouz ◽  
...  

Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson's disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might be caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artifacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes including bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein-interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, and PRKN known to be related to PD; others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC; as well as novel potential players in the PD pathogenesis, including NTRK1, TRIM25, ELAVL1. Together, these data showed the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology providing potential new targets for drug development.


Cells ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Federico Ferraro ◽  
Christina Fevga ◽  
Vincenzo Bonifati ◽  
Wim Mandemakers ◽  
Ahmed Mahfouz ◽  
...  

Several studies have analyzed gene expression profiles in the substantia nigra to better understand the pathological mechanisms causing Parkinson’s disease (PD). However, the concordance between the identified gene signatures in these individual studies was generally low. This might have been caused by a change in cell type composition as loss of dopaminergic neurons in the substantia nigra pars compacta is a hallmark of PD. Through an extensive meta-analysis of nine previously published microarray studies, we demonstrated that a big proportion of the detected differentially expressed genes was indeed caused by cyto-architectural alterations due to the heterogeneity in the neurodegenerative stage and/or technical artefacts. After correcting for cell composition, we identified a common signature that deregulated the previously unreported ammonium transport, as well as known biological processes such as bioenergetic pathways, response to proteotoxic stress, and immune response. By integrating with protein interaction data, we shortlisted a set of key genes, such as LRRK2, PINK1, PRKN, and FBXO7, known to be related to PD, others with compelling evidence for their role in neurodegeneration, such as GSK3β, WWOX, and VPC, and novel potential players in the PD pathogenesis. Together, these data show the importance of accounting for cyto-architecture in these analyses and highlight the contribution of multiple cell types and novel processes to PD pathology, providing potential new targets for drug development.


2017 ◽  
Vol 179 (1) ◽  
pp. 45-51 ◽  
Author(s):  
Hualei Sun ◽  
Xinxin Liu ◽  
Huina Ge ◽  
Teng Wang ◽  
Yan Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document