scholarly journals A Reversal in Hair Cell Orientation Organizes Both the Auditory and Vestibular Organs

2021 ◽  
Vol 15 ◽  
Author(s):  
Basile Tarchini

Sensory hair cells detect mechanical stimuli with their hair bundle, an asymmetrical brush of actin-based membrane protrusions, or stereocilia. At the single cell level, stereocilia are organized in rows of graded heights that confer the hair bundle with intrinsic directional sensitivity. At the organ level, each hair cell is precisely oriented so that its intrinsic directional sensitivity matches the direction of mechanical stimuli reaching the sensory epithelium. Coordinated orientation among neighboring hair cells usually ensures the delivery of a coherent local group response. Accordingly, hair cell orientation is locally uniform in the auditory and vestibular cristae epithelia in birds and mammals. However, an exception to this rule is found in the vestibular macular organs, and in fish lateral line neuromasts, where two hair cell populations show opposing orientations. This mirror-image hair cell organization confers bidirectional sensitivity at the organ level. Here I review our current understanding of the molecular machinery that produces mirror-image organization through a regional reversal of hair cell orientation. Interestingly, recent evidence suggests that auditory hair cells adopt their normal uniform orientation through a global reversal mechanism similar to the one at work regionally in macular and neuromast organs. Macular and auditory organs thus appear to be patterned more similarly than previously appreciated during inner ear development.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katie S. Kindt ◽  
Anil Akturk ◽  
Amandine Jarysta ◽  
Matthew Day ◽  
Alisha Beirl ◽  
...  

AbstractHair cells detect sound, head position or water movements when their mechanosensory hair bundle is deflected. Each hair bundle has an asymmetric architecture that restricts stimulus detection to a single axis. Coordinated hair cell orientations within sensory epithelia further tune stimulus detection at the organ level. Here, we identify GPR156, an orphan GPCR of unknown function, as a critical regulator of hair cell orientation. We demonstrate that the transcription factor EMX2 polarizes GPR156 distribution, enabling it to signal through Gαi and trigger a 180° reversal in hair cell orientation. GPR156-Gαi mediated reversal is essential to establish hair cells with mirror-image orientations in mouse otolith organs in the vestibular system and in zebrafish lateral line. Remarkably, GPR156-Gαi also instructs hair cell reversal in the auditory epithelium, despite a lack of mirror-image organization. Overall, our work demonstrates that conserved GPR156-Gαi signaling is integral to the framework that builds directional responses into mechanosensory epithelia.


2019 ◽  
Author(s):  
Francesco Gianoli ◽  
Thomas Risler ◽  
Andrei S. Kozlov

ABSTRACTHearing relies on the conversion of mechanical stimuli into electrical signals. In vertebrates, this process of mechano-electrical transduction (MET) is performed by specialized receptors of the inner ear, the hair cells. Each hair cell is crowned by a hair bundle, a cluster of microvilli that pivot in response to sound vibrations, causing the opening and closing of mechanosensitive ion channels. Mechanical forces are projected onto the channels by molecular springs called tip links. Each tip link is thought to connect to a small number of MET channels that gate cooperatively and operate as a single transduction unit. Pushing the hair bundle in the excitatory direction opens the channels, after which they rapidly reclose in a process called fast adaptation. It has been experimentally observed that the hair cell’s biophysical properties mature gradually during postnatal development: the maximal transduction current increases, sensitivity sharpens, transduction occurs at smaller hair-bundle displacements, and adaptation becomes faster. Similar observations have been reported during tip-link regeneration after acoustic damage. Moreover, when measured at intermediate developmental stages, the kinetics of fast adaptation varies in a given cell depending on the magnitude of the imposed displacement. The mechanisms underlying these seemingly disparate observations have so far remained elusive. Here, we show that these phenomena can all be explained by the progressive addition of MET channels of constant properties, which populate the hair bundle first as isolated entities, then progressively as clusters of more sensitive, cooperative MET channels. As the proposed mechanism relies on the difference in biophysical properties between isolated and clustered channels, this work highlights the importance of cooperative interactions between mechanosensitive ion channels for hearing.SIGNIFICANCEHair cells are the sensory receptors of the inner ear that convert mechanical stimuli into electrical signals transmitted to the brain. Sensitivity to mechanical stimuli and the kinetics of mechanotransduction currents change during hair-cell development. The same trend, albeit on a shorter timescale, is also observed during hair-cell recovery from acoustic trauma. Furthermore, the current kinetics in a given hair cell depends on the stimulus magnitude, and the degree of that dependence varies with development. These phenomena have so far remained unexplained. Here, we show that they can all be reproduced using a single unifying mechanism: the progressive formation of channel pairs, in which individual channels interact through the lipid bilayer and gate cooperatively.


Author(s):  
Jeffrey R. Holt ◽  
Gwenaëlle S.G. Géléoc

The organs of the vertebrate inner ear respond to a variety of mechanical stimuli: semicircular canals are sensitive to angular velocity, the saccule and utricle respond to linear acceleration (including gravity), and the cochlea is sensitive to airborne vibration, or sound. The ontogenically related lateral line organs, spaced along the sides of aquatic vertebrates, sense water movement. All these organs have a common receptor cell type, which is called the hair cell, for the bundle of enlarged microvilli protruding from its apical surface. In different organs, specialized accessory structures serve to collect, filter, and then deliver these physical stimuli to the hair bundles. The proximal stimulus for all hair cells is deflection of the mechanosensitive hair bundle. Hair cells convert mechanical information contained within the temporal pattern of hair bundle deflections into electrical signals, which they transmit to the brain for interpretation.


2018 ◽  
Vol 115 (33) ◽  
pp. 8388-8393 ◽  
Author(s):  
Akira Honda ◽  
Tomoko Kita ◽  
Shri Vidhya Seshadri ◽  
Kazuyo Misaki ◽  
Zamal Ahmed ◽  
...  

The mechanosensory hair cells of the inner ear are required for hearing and balance and have a distinctive apical structure, the hair bundle, that converts mechanical stimuli into electrical signals. This structure comprises a single cilium, the kinocilium, lying adjacent to an ensemble of actin-based projections known as stereocilia. Hair bundle polarity depends on kinociliary protocadherin-15 (Pcdh15) localization. Protocadherin-15 is found only in hair-cell kinocilia, and is not localized to the primary cilia of adjacent supporting cells. Thus, Pcdh15 must be specifically targeted and trafficked into the hair-cell kinocilium. Here we show that kinocilial Pcdh15 trafficking relies on cell type-specific coupling to the generic intraflagellar transport (IFT) transport mechanism. We uncover a role for fibroblast growth factor receptor 1 (FGFR1) in loading Pcdh15 onto kinociliary transport particles in hair cells. We find that on activation, FGFR1 binds and phosphorylates Pcdh15. Moreover, we find a previously uncharacterized role for clathrin in coupling this kinocilia-specific cargo with the anterograde IFT-B complex through the adaptor, DAB2. Our results identify a modified ciliary transport pathway used for Pcdh15 transport into the cilium of the inner ear hair cell and coordinated by FGFR1 activity.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Meenakshi Prajapati-DiNubila ◽  
Ana Benito-Gonzalez ◽  
Erin Jennifer Golden ◽  
Shuran Zhang ◽  
Angelika Doetzlhofer

The mammalian auditory sensory epithelium has one of the most stereotyped cellular patterns known in vertebrates. Mechano-sensory hair cells are arranged in precise rows, with one row of inner and three rows of outer hair cells spanning the length of the spiral-shaped sensory epithelium. Aiding such precise cellular patterning, differentiation of the auditory sensory epithelium is precisely timed and follows a steep longitudinal gradient. The molecular signals that promote auditory sensory differentiation and instruct its graded pattern are largely unknown. Here, we identify Activin A and its antagonist follistatin as key regulators of hair cell differentiation and show, using mouse genetic approaches, that a local gradient of Activin A signaling within the auditory sensory epithelium times the longitudinal gradient of hair cell differentiation. Furthermore, we provide evidence that Activin-type signaling regulates a radial gradient of terminal mitosis within the auditory sensory epithelium, which constitutes a novel mechanism for limiting the number of inner hair cells being produced.


eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Eliot Dow ◽  
Adrian Jacobo ◽  
Sajjad Hossain ◽  
Kimberly Siletti ◽  
A J Hudspeth

The lateral-line neuromast of the zebrafish displays a restricted, consistent pattern of innervation that facilitates the comparison of microcircuits across individuals, developmental stages, and genotypes. We used serial blockface scanning electron microscopy to determine from multiple specimens the neuromast connectome, a comprehensive set of connections between hair cells and afferent and efferent nerve fibers. This analysis delineated a complex but consistent wiring pattern with three striking characteristics: each nerve terminal is highly specific in receiving innervation from hair cells of a single directional sensitivity; the innervation is redundant; and the terminals manifest a hierarchy of dominance. Mutation of the canonical planar-cell-polarity gene vangl2, which decouples the asymmetric phenotypes of sibling hair-cell pairs, results in randomly positioned, randomly oriented sibling cells that nonetheless retain specific wiring. Because larvae that overexpress Notch exhibit uniformly oriented, uniformly innervating hair-cell siblings, wiring specificity is mediated by the Notch signaling pathway.


2020 ◽  
Vol 219 (10) ◽  
Author(s):  
Andre Landin Malt ◽  
Arielle K. Hogan ◽  
Connor D. Smith ◽  
Maxwell S. Madani ◽  
Xiaowei Lu

In the mammalian cochlea, the planar cell polarity (PCP) pathway aligns hair cell orientation along the plane of the sensory epithelium. Concurrently, multiple cell intrinsic planar polarity (referred to as iPCP) modules mediate planar polarization of the hair cell apical cytoskeleton, including the kinocilium and the V-shaped hair bundle essential for mechanotransduction. How PCP and iPCP are coordinated during development and the roles of Wnt ligands in this process remain unresolved. Here we show that genetic blockade of Wnt secretion in the cochlear epithelium resulted in a shortened cochlear duct and misoriented and misshapen hair bundles. Mechanistically, Wnts stimulate Gi activity by regulating the localization of Daple, a guanine nucleotide exchange factor (GEF) for Gαi. In turn, the Gβγ complex signals through phosphoinositide 3-kinase (PI3K) to regulate kinocilium positioning and asymmetric localizations of a subset of core PCP proteins, thereby coordinating PCP and iPCP. Thus, our results identify a putative Wnt/heterotrimeric G protein/PI3K pathway for PCP regulation.


Cells ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 458 ◽  
Author(s):  
Kun Hou ◽  
Hui Jiang ◽  
Md. Rezaul Karim ◽  
Chao Zhong ◽  
Zhouwen Xu ◽  
...  

Barhl1, a mouse homologous gene of Drosophila BarH class homeobox genes, is highly expressed within the inner ear and crucial for the long-term maintenance of auditory hair cells that mediate hearing and balance, yet little is known about the molecular events underlying Barhl1 regulation and function in hair cells. In this study, through data mining and in vitro report assay, we firstly identified Barhl1 as a direct target gene of Atoh1 and one E-box (E3) in Barhl1 3’ enhancer is crucial for Atoh1-mediated Barhl1 activation. Then we generated a mouse embryonic stem cell (mESC) line carrying disruptions on this E3 site E-box (CAGCTG) using CRISPR/Cas9 technology and this E3 mutated mESC line is further subjected to an efficient stepwise hair cell differentiation strategy in vitro. Disruptions on this E3 site caused dramatic loss of Barhl1 expression and significantly reduced the number of induced hair cell-like cells, while no affections on the differentiation toward early primitive ectoderm-like cells and otic progenitors. Finally, through RNA-seq profiling and gene ontology (GO) enrichment analysis, we found that this E3 box was indispensable for Barhl1 expression to maintain hair cell development and normal functions. We also compared the transcriptional profiles of induced cells from CDS mutated and E3 mutated mESCs, respectively, and got very consistent results except the Barhl1 transcript itself. These observations indicated that Atoh1-mediated Barhl1 expression could have important roles during auditory hair cell development. In brief, our findings delineate the detail molecular mechanism of Barhl1 expression regulation in auditory hair cell differentiation.


1994 ◽  
Vol 71 (2) ◽  
pp. 666-684 ◽  
Author(s):  
R. A. Baird

1. Hair cells in whole-mount in vitro preparations of the utricular macula of the bullfrog (Rana catesbeiana) were selected according to their macular location and hair bundle morphology. The voltage responses of selected hair cells to intracellular current steps and sinusoids in the frequency range of 0.5-200 Hz were studied with conventional intracellular recordings. 2. The utricular macula is divided into medial and lateral parts by the striola, a 75- to 100-microns zone that runs for nearly the entire length of the sensory macula near its lateral border. The striola is distinguished from flanking extrastriolar regions by the elevated height of its apical surface and the wider spacing of its hair cells. A line dividing hair cells of opposing polarities, located near the lateral border of the striola, separates it into medial and lateral parts. On average, the striola consists of five to seven medial and two to three lateral rows of hair cells. 3. Utricular hair cells were classified into four types on the basis of hair bundle morphology. Type B cells, the predominant hair cell type in the utricular macula, are small cells with short sterocilia and kinocilia 2-6 times as long as their longest stereocilia. These hair cells were found throughout the extrastriola and, more rarely, in the striolar region. Three other hair cell types were restricted to the striolar region. Type C cells, found primarily in the outer striolar rows, resemble enlarged versions of Type B hair cells. Type F cells have kinocilia approximately equal in length to their longest stereocilia and are restricted to the middle striolar rows. Type E cells, found only in the innermost striolar rows, have short kinocilia with prominent kinociliary bulbs. 4. The resting potential of 99 hair cells was -58.0 +/- 7.6 (SD) mV and did not vary significantly for hair cells in differing macular locations or with differing hair bundle morphology. The RN of hair cells, measured from the voltage response to current steps, varied from 200 to > 2,000 M omega and was not well correlated with cell size. On average, Type B cells had the highest RN, followed by Type F, Type E, and Type C cells. When normalized to their surface area, the membrane resistance of hair cells ranged from < 1,000 to > 10,000 k omega.cm2. The input capacitance of hair cells ranged from < 3 to > 15 pA, corresponding on average to a membrane capacitance of 0.8 +/- 0.2 pA/cm2.(ABSTRACT TRUNCATED AT 400 WORDS)


1983 ◽  
Vol 96 (3) ◽  
pp. 807-821 ◽  
Author(s):  
L G Tilney ◽  
J C Saunders

Located on the sensory epithelium of the sickle-shaped cochlea of a 7- to 10-d-old chick are approximately 5,000 hair cells. When the apical surface of these cell is examined by scanning microscopy, we find that the length, number, width, and distribution of the stereocilia on each hair cell are predetermined. Thus, a hair cell located at the distal end of the cochlea has 50 stereocilia, the longest of which are 5.5 microns in length and 0.12 microns in width, while those at the proximal end number 300 and are maximally 1.5 microns in length and 0.2 micron in width. In fact, if we travel along the cochlea from its distal to proximal end, we see that the stereocilia on successive hair cells gradually increase in number and width, yet decrease in length. Also, if we look transversely across the cochlea where adjacent hair cells have the same length and number of stereocilia (they are the same distance from the distal end of the cochlea), we find that the stereocilia of successive hair cells become thinner and that the apical surface area of the hair cell proper, not including the stereocilia, decreases from a maximum of 80 microns2 to 15 microns2. Thus, if we are told the length of the longest stereocilium on a hair cell and the width of that stereocilium, we can pinpoint the position of that hair cell on the cochlea in two axes. Likewise, if we are told the number of stereocilia and the apical surface of a hair cell, we can pinpoint the location of that cell in two axes. The distribution of the stereocilia on the apical surface of the cell is also precisely determined. More specifically, the stereocilia are hexagonally packed and this hexagonal lattice is precisely positioned relative to the kinocilium. Because of the precision with which individual hair cells regulate the length, width, number, and distribution of their cell extensions, we have a magnificent object with which to ask questions about how actin filaments that are present within the cell are regulated. Equally interesting is that the gradient in stereociliary length, number, width, and distribution may play an important role in frequency discrimination in the cochlea. This conclusion is amplified by the information presented in the accompanying paper (Tilney, L.G., E.H. Egelman, D.J. DeRosier, and J.C. Saunders, 1983, J. Cell Biol., 96:822-834) on the packing of actin filaments in this stereocilia.


Sign in / Sign up

Export Citation Format

Share Document