scholarly journals Computational Model of Motion Sickness Describing the Effects of Learning Exogenous Motion Dynamics

2021 ◽  
Vol 15 ◽  
Author(s):  
Takahiro Wada

The existing computational models used to estimate motion sickness are incapable of describing the fact that the predictability of motion patterns affects motion sickness. Therefore, the present study proposes a computational model to describe the effect of the predictability of dynamics or the pattern of motion stimuli on motion sickness. In the proposed model, a submodel – in which a recursive Gaussian process regression is used to represent human features of online learning and future prediction of motion dynamics – is combined with a conventional model of motion sickness based on an observer theory. A simulation experiment was conducted in which the proposed model predicted motion sickness caused by a 900 s horizontal movement. The movement was composed of a 9 m repetitive back-and-forth movement pattern with a pause. Regarding the motion condition, the direction and timing of the motion were varied as follows: (a) Predictable motion (M_P): the direction of the motion and duration of the pause were set to 8 s; (b) Motion with unpredicted direction (M_dU): the pause duration was fixed as in (M_P), but the motion direction was randomly determined; (c) Motion with unpredicted timing (M_tU): the motion direction was fixed as in (M_P), but the pause duration was randomly selected from 4 to 12 s. The results obtained using the proposed model demonstrated that the predicted motion sickness incidence for (M_P) was smaller than those for (M_dU) and (M_tU) and no considerable difference was found between M_dU and M_tU. This tendency agrees with the sickness patterns observed in a previous experimental study in which the human participants were subject to motion conditions similar to those used in our simulations. Moreover, no significant differences were found in the predicted motion sickness incidences at different conditions when the conventional model was used.

2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Selin Metin ◽  
N. Serap Sengor

Although, there are considerable works on the neural mechanisms of reward-based learning and decision making, and most of them mention that addiction can be explained by malfunctioning in these cognitive processes, there are very few computational models. This paper focuses on nicotine addiction, and a computational model for nicotine addiction is proposed based on the neurophysiological basis of addiction. The model compromises different levels ranging from molecular basis to systems level, and it demonstrates three different possible behavioral patterns which are addict, nonaddict, and indecisive. The dynamical behavior of the proposed model is investigated with tools used in analyzing nonlinear dynamical systems, and the relation between the behavioral patterns and the dynamics of the system is discussed.


2021 ◽  
Vol 15 ◽  
Author(s):  
Lichao Zhang ◽  
Zihong Huang ◽  
Liang Kong

Background: RNA-binding proteins establish posttranscriptional gene regulation by coordinating the maturation, editing, transport, stability, and translation of cellular RNAs. The immunoprecipitation experiments could identify interaction between RNA and proteins, but they are limited due to the experimental environment and material. Therefore, it is essential to construct computational models to identify the function sites. Objective: Although some computational methods have been proposed to predict RNA binding sites, the accuracy could be further improved. Moreover, it is necessary to construct a dataset with more samples to design a reliable model. Here we present a computational model based on multi-information sources to identify RNA binding sites. Method: We construct an accurate computational model named CSBPI_Site, based on xtreme gradient boosting. The specifically designed 15-dimensional feature vector captures four types of information (chemical shift, chemical bond, chemical properties and position information). Results: The satisfied accuracy of 0.86 and AUC of 0.89 were obtained by leave-one-out cross validation. Meanwhile, the accuracies were slightly different (range from 0.83 to 0.85) among three classifiers algorithm, which showed the novel features are stable and fit to multiple classifiers. These results showed that the proposed method is effective and robust for noncoding RNA binding sites identification. Conclusion: Our method based on multi-information sources is effective to represent the binding sites information among ncRNAs. The satisfied prediction results of Diels-Alder riboz-yme based on CSBPI_Site indicates that our model is valuable to identify the function site.


2021 ◽  
Vol 11 (4) ◽  
pp. 1817
Author(s):  
Zheng Li ◽  
Azure Wilson ◽  
Lea Sayce ◽  
Amit Avhad ◽  
Bernard Rousseau ◽  
...  

We have developed a novel surgical/computational model for the investigation of unilat-eral vocal fold paralysis (UVFP) which will be used to inform future in silico approaches to improve surgical outcomes in type I thyroplasty. Healthy phonation (HP) was achieved using cricothyroid suture approximation on both sides of the larynx to generate symmetrical vocal fold closure. Following high-speed videoendoscopy (HSV) capture, sutures on the right side of the larynx were removed, partially releasing tension unilaterally and generating asymmetric vocal fold closure characteristic of UVFP (sUVFP condition). HSV revealed symmetric vibration in HP, while in sUVFP the sutured side demonstrated a higher frequency (10–11%). For the computational model, ex vivo magnetic resonance imaging (MRI) scans were captured at three configurations: non-approximated (NA), HP, and sUVFP. A finite-element method (FEM) model was built, in which cartilage displacements from the MRI images were used to prescribe the adduction, and the vocal fold deformation was simulated before the eigenmode calculation. The results showed that the frequency comparison between the two sides was consistent with observations from HSV. This alignment between the surgical and computational models supports the future application of these methods for the investigation of treatment for UVFP.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 849
Author(s):  
Sung-An Kim

A modeling of a turbo air compressor system (TACS), with a multi-level inverter for driving variable speed, combining an electrical model of an electric motor drive system (EMDS) and a mechanical model of a turbo air compressor, is essential to accurately analyze dynamics characteristics. Compared to the mechanical model, the electrical model has a short sampling time due to the high frequency switching operation of the numerous power semiconductors inside the multi-level inverter. This causes the problem of increased computational time for dynamic characteristics analysis of TACS. To solve this problem, the conventional model of the multi-level inverter has been proposed to simplify the switching operation of the power semiconductors, however it has low accuracy because it does not consider pulse width modulation (PWM) operation. Therefore, this paper proposes an improved modeling of the multi-level inverter for TACS to reduce computational time and improve the accuracy of electrical and mechanical responses. In order to verify the reduced computational time of the proposed model, the conventional model using the simplified model is compared and analyzed using an electronic circuit simulation software PSIM. Then, the improved accuracy of the proposed model is verified by comparison with the experimental results.


2014 ◽  
Vol 931-932 ◽  
pp. 1457-1461 ◽  
Author(s):  
Phatsavee Ongruk ◽  
Padet Siriyasatien ◽  
Kraisak Kesorn

There are several factors that can be used to predict a dengue fever outbreak. Almost all existing research approaches, however, usually exploit the use of a basic set of core attributes to forecast an outbreak, e.g. temperature, humidity, wind speed, and rainfall. In contrast, this research identifies new attributes to improve the prediction accuracy of the outbreak. The experimental results are analyzed using a correlation analysis and demonstrate that the density of dengue virus infection rate in female mosquitoes and seasons have strong correlation with a dengue fever outbreak. In addition, the research constructs a forecast model using Poisson regression analysis. The result shows the proposed model obtains significantly low forecasting error rate when compared it against the conventional model using only temperature, humidity, wind speed, and rainfall parameters.


Author(s):  
Ali Ahmadi ◽  
Jonathan F. Holzman ◽  
Homayoun Najjaran ◽  
Mina Hoorfar

In this paper a novel numerical algorithm is proposed for modeling the transient motion of microdroplets in digital microfluidic systems. The new methodology combines the effects of the electrostatic and hydrodynamic pressures to calculate the actuating and opposing forces and the moving boundary of the microdroplet. The proposed model successfully predicts transient motion of the microdroplet in digital microfluidic systems, which is crucial in the design, control and fabrication of such devices. The results of such an analysis are in agreement with the expected trend.


2013 ◽  
Vol 12 (2) ◽  
pp. 055-062
Author(s):  
Stefan Pradelok ◽  
Piotr Bętkowski ◽  
Adam Rudzik ◽  
Piotr Łaziński

This paper presents a method of engineering modelling of structural details, which enables the analysis of local static and dynamic effects in a complex structure with the use of a personal computer. An analysed structural detail, modelled with the use of shell finite elements, is mounted to a spatial truss member system. Then, on the basis of prepared computational model, a static or dynamic analysis is carried out. The proposed model allows to detect the local effects in a theoretical. Conducted analyses confirmed the correct operation of such a computational model. Hence, the method of modelling presented in this paper allows to analyse the local effects on ordinary personal computer and more importantly, the results of such calculations are available within a relatively short period of time. The calculations are carried out by analysing the local effects in a steel node of the truss railway bridge.


2019 ◽  
Author(s):  
Harhim Park ◽  
Jaeyeong Yang ◽  
Jasmin Vassileva ◽  
Woo-Young Ahn

The Balloon Analogue Risk Task (BART) is a popular task used to measure risk-taking behavior. To identify cognitive processes associated with choice behavior on the BART, a few computational models have been proposed. However, the extant models are either too simplistic or fail to show good parameter recovery performance. Here, we propose a novel computational model, the exponential-weight mean-variance (EWMV) model, which addresses the limitations of existing models. By using multiple model comparison methods, including post hoc model fits criterion and parameter recovery, we showed that the EWMV model outperforms the existing models. In addition, we applied the EWMV model to BART data from healthy controls and substance-using populations (patients with past opiate and stimulant dependence). The results suggest that (1) the EWMV model addresses the limitations of existing models and (2) heroin-dependent individuals show reduced risk preference than other groups in the BART.


2014 ◽  
Vol 2014 ◽  
pp. 1-15
Author(s):  
Mohamed Abdo Abd Al-Hady ◽  
Amr Ahmed Badr ◽  
Mostafa Abd Al-Azim Mostafa

The immune system has a cognitive ability to differentiate between healthy and unhealthy cells. The immune system response (ISR) is stimulated by a disorder in the temporary fuzzy state that is oscillating between the healthy and unhealthy states. However, modeling the immune system is an enormous challenge; the paper introduces an extensive summary of how the immune system response functions, as an overview of a complex topic, to present the immune system as a cognitive intelligent agent. The homogeneity and perfection of the natural immune system have been always standing out as the sought-after model we attempted to imitate while building our proposed model of cognitive architecture. The paper divides the ISR into four logical phases: setting a computational architectural diagram for each phase, proceeding from functional perspectives (input, process, and output), and their consequences. The proposed architecture components are defined by matching biological operations with computational functions and hence with the framework of the paper. On the other hand, the architecture focuses on the interoperability of main theoretical immunological perspectives (classic, cognitive, and danger theory), as related to computer science terminologies. The paper presents a descriptive model of immune system, to figure out the nature of response, deemed to be intrinsic for building a hybrid computational model based on a cognitive intelligent agent perspective and inspired by the natural biology. To that end, this paper highlights the ISR phases as applied to a case study on hepatitis C virus, meanwhile illustrating our proposed architecture perspective.


Sign in / Sign up

Export Citation Format

Share Document