scholarly journals An Evaluation of Phenolic Compounds, Carotenoids, and Antioxidant Properties in Leaves of South African Cultivars, Peruvian 199062.1 and USA's Beauregard

2021 ◽  
Vol 8 ◽  
Author(s):  
Charmaine J. Phahlane ◽  
Sunette M. Laurie ◽  
Tinotenda Shoko ◽  
Vimbainashe E. Manhivi ◽  
Dharini Sivakumar

In this study, leaves of sweet potato cultivars from South Africa (“Ndou,” “Bophelo,” “Monate,” and “Blesbok”), “Beauregard,” a sweet potato cultivar from the USA, and a Peruvian cultivar “199062. 1” were analyzed using UPLC/QTOF/MS and chemometrics, with the aim of characterizing the locally developed sweet potato cultivars and comparing them with already well-known established varieties on the market. A set of 13 phenolic compounds was identified. A partial least squares discriminant analysis, a hierarchical cluster analysis, and variables importance in projection were used to successfully distinguish sweet potato varieties based on their distinct metabolites. Caffeic acid enabled to distinguish Cluster 1 leaves of varieties (“Beauregard” and “Ndou”) from Cluster 2 (“199062.1,” “Bophelo,” “Monate,” and “Blesbok”). The leaves of “Bophelo” contained the highest concentrations of rutin, quercetin 3-O-galactoside, 3-caffeoylquinic acid (3-CQA), (5-CQA), 1,3 dicaffeoylquinic acid (1,3-diCQA), 1,4-diCQA, and 3,5-diCQA. Furthermore, Bophelo leaves showed the highest antioxidant activities (FRAP 19.69 mM TEACg−1 and IC50 values of (3.51 and 3.43 mg ml−1) for DPPH and ABTS, respectively, compared to the other varieties. Leaves of “Blesbok” contained the highest levels of β-carotene (10.27 mg kg−1) and zeaxanthin (5.02 mg kg−1) on a dry weight basis compared to all other varieties. This study demonstrated that the leaves of local cultivars “Bophelo” and “Blesbok” have the potential to become functional ingredients for food processing.

2020 ◽  
Vol 10 (4-s) ◽  
pp. 108-111
Author(s):  
Karima Loucif ◽  
Hassiba Benabdallah ◽  
Fatima Benchikh ◽  
Soulaf Mehlous ◽  
Chahrazed Kaoudoune ◽  
...  

Reactive oxygen (ROS) and nitrogen species (RNS) are produced in all cells and play important roles in physiology. The loss of the redox balance, either by an increase of oxidant molecules ROS and RNS or by decreased antioxidant system activities cause a state of oxidative stress. Several studies are going on worldwide directed towards finding natural antioxidants of plant origin. Plants containing phenolic compounds have been reported to possess strong antioxidant activity. The objective of this study is to evaluate total polyphenols and flavonoids contents (TPC and TFC) as well as examine the in vitro antioxidative properties from aqueous extract of Ammoides atlantica (AqE). TPC was estimated utilizing Folin-Ciocalteu's reagent. TFC was evaluated utilizing the aluminum chloride method. The antioxidant properties were evaluated using metal chelating and cupric ion reducing antioxidant capacity (CUPRAC) assays. Indeed, results showed that the AqE is rich in polyphenols (141.74±0.44 µg gallic acid equivalents/ mg of dry weight), and flavonoids (61.87±6.7 µg quercetin equivalent/ mg dry weight). These phytochemical compounds possess significant antioxidant activities. The results showed that AqE exhibited a good Metal chelating activity with an IC50 of 36.57±4.73 µg/ mL. CUPRAC assay showed that AqE extract exhibited high cupric ion reducing antioxidant capacity with an A0.5 of 8.58±0.13 µg/mL. These findings provide evidence that AqE of Ammoides atlantica is a potential source of antioxidant which have many benefits towards human health. Keywords: Ammoides atlantica, aqueous extract, phenolic compounds, metal chelating and cupric ion reducing antioxidant capacity.


2012 ◽  
Vol 41 (12) ◽  
pp. 1656-1662 ◽  
Author(s):  
Meishan Li ◽  
Gwi Yeong Jang ◽  
Sang Hoon Lee ◽  
Koan Sik Woo ◽  
Hyun Man Sin ◽  
...  

1983 ◽  
Vol 61 (12) ◽  
pp. 3399-3404 ◽  
Author(s):  
Ling A. Chang ◽  
Larry K. Hammett ◽  
David M. Pharr

The postanaerobic behavior of sweet potato roots from a flood-tolerant cultivar, 'Centennial,' and a flood-susceptible cultivar, 'Caromex,' was studied. High concentrations of CO2 and low concentrations of O2 were present in the internal atmosphere of 'Caromex' roots even after the anaerobically pretreated roots were restored to air for a few days, whereas in 'Centennial,' the internal gas atmosphere was less affected by anoxia. Ethanol accumulation in 'Caromex' was consistently higher than in 'Centennial,' and the postanaerobic changes were different between cultivars. An inducation of electrolyte leakage was observed from both cultivars immediately after roots were exposed to a CO2-enriched environment for 48 h. The leakage became greater in 'Caromex' after a 3-day aerobic exposure. In 'Centennial,' leakage of electrolytes due to CO2 treatment diminished at the end of 3 days. Application of ethanol to the discs had no immediate effect on electrolyte leakage in either cultivar under a N2 environment. However, anaerobiosis alone resulted in higher electrolyte leakage. It remains to be determined that the postanaerobic patterns of 'Caromex' and 'Centennial' are characteristic of flood-susceptible and flood-tolerant sweet potato cultivars in general.


2015 ◽  
Vol 10 (6) ◽  
pp. 1934578X1501000 ◽  
Author(s):  
Agnieszka Arceusz ◽  
Marek Wesolowski ◽  
Beata Ulewicz-Magulska

The aim of this study was to quantify the levels of flavonoids (rutin, myricetin, quercetin, kaempferol) and phenolic acids (gallic, p-coumaric, rosmarinic, syringic, caffeic, chlorogenic, ellagic, ferulic) in lemon balm ( Melissa officinalis L.) commonly used as a culinary, aromatic and medicinal herb. A rapid and reliable HPLC procedure was developed to determine the phenolic compounds in methanolic extracts, infusions and tinctures prepared from lemon balm. Except for myricetin and quercetin, as well as ellagic, gallic and rosmarinic acids, higher levels of the analytes under study were determined in the methanolic extracts (up to 22 mg/g of dry weight, DW), than in infusions (up to 5 mg/g DW). Tinctures were the poorest in flavonoids and phenolic acids (below 550 μg/g DW), except for ellagic and rosmarinic acids, which were quantified in tinctures at higher levels (mg/g DW). To sum up, the flavonoids were extracted more effectively in the infusions and tinctures than the phenolic acids. Statistically significant correlations were found between phenolic acids, possibly owing to similar biochemical pathways of the compounds. The hierarchical cluster and principal component analyses have also shown that the samples of lemon balm could be differentiated based on the levels of flavonoids and phenolic acids.


Molecules ◽  
2020 ◽  
Vol 25 (14) ◽  
pp. 3260 ◽  
Author(s):  
Li Duan ◽  
Chenmeng Zhang ◽  
Yang Zhao ◽  
Yanzhong Chang ◽  
Long Guo

Herbs derived from Taraxacum genus have been used as traditional medicines and food supplements in China for hundreds of years. Taraxacum mongolicum is a famous traditional Chinese medicine derived from Taraxacum genus for the treatment of inflammatory disorders and viral infectious diseases. In the present study, the bioactive phenolic chemical profiles and antioxidant activities of flowers, leaves, and roots of Taraxacum mongolicum were investigated. Firstly, a high performance liquid chromatography method combined with segmental monitoring strategy was employed to simultaneously determine six bioactive phenolic compounds in Taraxacum mongolicum samples. Moreover, multivariate statistical analysis, including hierarchical clustering analysis, principal component analysis, and partial least squares discriminant analysis were performed to compare and discriminate different parts of Taraxacum mongolicum based on the quantitative data. The results showed that three phenolic compounds, caftaric acid, caffeic acid, and luteolin, could be regarded as chemical markers for the differences of flowers, leaves, and roots of Taraxacum mongolicum. In parallel, total phenolic contents, total flavonoid contents and antioxidant activities of different parts of Taraxacum mongolicum were also evaluated and compared. It is clear that Taraxacum mongolicum had antioxidant properties, and the antioxidant capacities of different parts of Taraxacum mongolicum in three antioxidant assays showed a similar tendency: Flowers ≈ leaves > roots, which revealed a positive relationship with their total phenolic and flavonoid contents. Furthermore, to find the potential antioxidant components of Taraxacum mongolicum, the latent relationships of the six bioactive phenolic compounds and antioxidant activities of Taraxacum mongolicum were investigated by Pearson correlation analysis. The results indicated caftaric acid and caffeic acid could be the potential antioxidant ingredients of Taraxacum mongolicum. The present work may facilitate better understanding of differences of bioactive phenolic constituents and antioxidant activities of different parts of Taraxacum mongolicum and provide useful information for utilization of this herbal medicine.


2016 ◽  
Vol 194 ◽  
pp. 46-54 ◽  
Author(s):  
Yijie Hu ◽  
Liqing Deng ◽  
Jinwu Chen ◽  
Siyu Zhou ◽  
Shuang Liu ◽  
...  

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Fuhao Wang ◽  
Lu Huang ◽  
Xingxing Yuan ◽  
Xiaoyan Zhang ◽  
Luping Guo ◽  
...  

Abstract This study aimed to investigate the proximate and phytochemicals present in seeds of 24 mung bean (Vigna radiate L.) genotypes from four provinces of China for estimating their nutritional and antioxidant properties. Proximate analysis of mung bean genotypes revealed that starch, protein, fat, ash and water-soluble polysaccharide ranged from 39.54–60.66, 17.36–24.89, 4.24–12.18, 2.78–3.53 and 1.99–2.96 g/100 g respectively. The five principal fatty acids detected in mung beans were stearic acid, palmitic acid, linoleic acid, oleic acid, and linolenic acid. The contents of insoluble-bound phenolic compounds, soluble phenolic compounds, and flavonoids ranged from 0.78 to 1.5 mg GAE g− 1, 1.78 to 4.10 mg GAE g− 1, and 1.25 to 3.52 mg RE g− 1, respectively. The black seed coat mung bean genotype M13 (Suheilv 1) exhibited highest flavonoid and phenolic contents which showed strong antioxidant activity. Two flavonoids (vitexin and isovitexin) and four phenolic acids (caffeic, syringic acid, p-coumaric, and ferulic acids) were identified by HPLC. Vitexin and isovitexin were the major phenolic compounds in all mung bean genotypes. The content of soluble phenolic compounds had positive correlation with DPPH (r2 = 0.713) and ABTS (r2 = 0.665) radical scavenging activities. Principal component analysis indicated that the first two principal components could reflect most details on mung bean with a cumulative contribution rate of 66.1%. Twenty-four mung bean genotypes were classified into four groups based on their phenolic compounds contents and antioxidant activities. The present study highlights the importance of these mung bean genotypes as a source of nature antioxidant ingredient for the development of functional foods or a source of health promoting food. Graphical Abstract


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Pitchaya Pothinuch ◽  
Sasitorn Tongchitpakdee

Phenolic compounds in mulberry leaves harvested from three cultivars (Buriram 60, BR 60; Sakonnakhon, SK; and Khunphai, KH) at different leaf ages (tips, young, and old leaves) were identified and quantified using HPLC-DAD and HPLC-ESI/MS. A total of 13 phenolic compounds, which were mainly as caffeoylquinic acids and flavonol glycosides, were detectable. Predominant phenolic compounds were 5-O-caffeoylquinic acid (3.5–13.1 mg/g dry weight), 4-O-caffeoylquinic acid (1.3–2.4 mg/g dry weight), and quercetin-3-O-rutinoside (1.0–4.4 mg/g dry weight). Qualitative and quantitative differences in phenolic compounds in mulberry leaves were investigated among cultivars and leaf ages. Principal component analysis and hierarchical cluster analysis were used for classification of the mulberry leaves. Based on the similarity of phenolic compounds, mulberry leaves were clustered into three groups: (1) tips of leaves from all cultivars; (2) young and old leaves of mulberry cv. BR 60; (3) young and old leaves of mulberry cv. SK and KH. Therefore, according to phenolic compounds in mulberry leaves, tips of leaves from all cultivars should be intended for production of functional healthy foods.


Molecules ◽  
2019 ◽  
Vol 24 (8) ◽  
pp. 1536 ◽  
Author(s):  
Alexandra D. Frond ◽  
Cristian I. Iuhas ◽  
Ioana Stirbu ◽  
Loredana Leopold ◽  
Sonia Socaci ◽  
...  

Vegetables comprise a significant portion of our daily diet with their high content in nutrients including fiber, vitamins, minerals, as well as phenolic compounds. Vegetable consumption has been shown to be positively associated with the prevention of several degenerative diseases thanks to their bioactive compounds. Accordingly, five selected vegetables, namely, red chicory, red onion, eggplant, purple sweet potato, and black carrot were thoroughly assessed for their phenolic content in this study. For this purpose, the total phenolic and flavonoid content of these five vegetables and their antioxidant activities that are based on three common methods ABTS radical cation decolorization assay (ABTS), Cupric Ion Reducing Antioxidant Capacity (CUPRAC), and DPPH scavenging activity assay were determined. Additionally, HPLC-PDA/Electrospray ionization coupled with mass spectrometry (HPLC-PDA/-ESI+-MS)-based identification and quantification of the members belonging to polyphenols present in each vegetable were determined. Statistical correlations between antioxidant activities and the specific type of phenolic compounds, such as anthocyanins, flavonoids, anthocyanins, and phenolic acids were further elucidated. Phenolic acids (chlorogenic and syringic acids) were found to be the most abundant compounds that are present in all samples. Among the anthocyanins, cyaniding derivatives were present in all vegetables. In terms of their antioxidant activities, the analyzed vegetables were ranked as red chicory > purple sweet potato > black carrot > eggplant > red onion, in descending order. Superior antioxidant activities exhibited by red chicory and purple sweet potato were attributed to the high content of phenolic compounds, especially flavonols (quercetin-3,4-O-diglucoside) in red chicory and anthocyanins (peonidin-3-caffeoyl p-hydroxybenzoylsophoroside-5-glucoside) in purple sweet potato.


Sign in / Sign up

Export Citation Format

Share Document