scholarly journals In vitro Assessment of Chemical and Pre-biotic Properties of Carboxymethylated Polysaccharides From Passiflora edulis Peel, Xylan, and Citrus Pectin

2021 ◽  
Vol 8 ◽  
Author(s):  
Yongjin Sun ◽  
Yuan Guan ◽  
Hock Eng Khoo ◽  
Xia Li

This study aimed to determine the carboxymethylation effect of crude water-soluble polysaccharides of Passiflora edulis peel (WPEP), xylan (XY), and citrus pectin (CP). Their chemical and pre-biotic properties were also determined. The polysaccharides were carboxymethylated by reacting with chloroacetic acid and sodium hydroxide. The carboxymethylated and non-carboxymethylated polysaccharides were also used as pre-biotics to study the growth pattern of selected intestinal microflora. These polysaccharides substituted the glucose solution in culture media for culturing Lactobacillus brevis GIM1.773, Lactobacillus plantarum GIM1.19, Lactobacillus delbrueckii subsp. bulgaricus GIM1.155, and Streptococcus thermophilus GIM1.540. The results showed that the carboxymethylated polysaccharides c-XY, c-CP, and c-WPEP, had substitution degrees of 0.682, 0.437, and 0.439, respectively. The polysaccharides demonstrated resistance to digestion in the simulated human digestive models. The resistance to digestion was enhanced by carboxymethylation, especially the carboxymethylated CP and WPEP. The results also showed that the pre-biotic activities of the polysaccharides increased after carboxymethylation. The c-XY had a better pre-biotic effect than XY and the other carbohydrate samples. The findings suggested that carboxymethylated polysaccharides may be developed into novel pre-biotics and nutraceuticals that could promote growth of the probiotic strains.

Molecules ◽  
2018 ◽  
Vol 23 (10) ◽  
pp. 2596 ◽  
Author(s):  
Yongxia Cheng ◽  
Haibo Lan ◽  
Lei Zhao ◽  
Kai Wang ◽  
Zhuoyan Hu

The prebiotic potential of longan juice obtained by a commercial Viscozyme L for conversion of constituent sucrose to fructo-oligosaccharide was investigated. The physicochemical properties and carbohydrate composition of the longan juice was evaluated before and after enzymatic treatment. The stimulation effects of the treated longan juice on probiotic bacteria growth were also studied in vitro. The results showed that total soluble solids, yield and clarity of longan juice were all significantly improved after enzyme treatment. The water-soluble polysaccharide content, including pectin, was significantly increased. Compared with the natural longan pulp, the enzyme treated juice showed a significant decrease in sucrose content. Substantial fructo-oligosaccharides including 1-kestose and nystose were synthesized after enzyme treatment. The molecular weight distribution and the monosaccharide composition of the water-soluble polysaccharide were significantly changed by enzyme treatment. The treated longan juice and its ethanol-soluble sugar fraction promoted the growth of Streptococus thermophiles, Lactobacillus acidophilus and Lactobacillus delbrueckii, showing a good potential of the treated longan juice for producing functional foods and nutraceuticals.


Animals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1204 ◽  
Author(s):  
César Betancur ◽  
Yordan Martínez ◽  
Guillermo Tellez-Isaias ◽  
Mavir Carolina Avellaneda ◽  
Borja Velázquez-Martí

Three lactic acid strains were isolated from feces of the native Zungo Pelado breed of pigs (n = 5) and presumably identified as belonging to the Lactobacillaceae family by morphological techniques showing that they were Gram-positive/rod-shaped and catalase- and oxidase-negative. They were then identified by biochemical tests using API 50CHL as Lactobacillus plantarum (CAM6), Lactobacillus brevis (CAM7), and Lactobacillus acidophilus (CL4). However, 16S rRNA identification showed that all three strains were Lactobacillus plantarum. Additionally, all three isolates were able to grow in pH 3 and 4. Interestingly, the growth of the CAM7 strain decreased at pH 5.6 compared to that of the CAM6 strain (p < 0.05), and the growth of the CL4 strain was reduced at pH 7(p < 0.05). All three candidates showed good growth on bile salts (≥0.15%), and CAM6 and CAM7 showed better tolerance at higher concentrations (0.30%). Similarly, all strains tolerated sodium chloride (NaCl) concentrations from 2 to 10%. These strains also grew well at all temperatures tested (30, 37, and 42 °C). The CAM6 strain showed in vitro antibacterial activity against selected enteropathogenic bacteria (Escherichia coli strain NBRC 102203 and Salmonella enterica serovar Typhimurium 4.5.12) and commensal bacteria (Klebsiella pneumoniae ATCC BAA-1705D-5 and Pseudomonas aeruginosa ATCC 15442) and resistance to all antibiotics except amoxicillin. Further studies to evaluate the effects of these probiotic candidate strains in commercial pigs are currently underway.


1959 ◽  
Vol 5 (2) ◽  
pp. 161-168 ◽  
Author(s):  
Ellicott McConnell ◽  
A. Glenn Richards

Bacillus thuringiensis Berliner produces in vitro a heat-stable, dialyzable substance which is toxic for insects when injected. The same or a similar substance is produced in vivo. The toxic principle is of unknown composition. It is heat-stable, water-soluble, dialyzable, and resistant to low temperatures. It is probably neither a protein nor a lipid. Clearly it is distinct from the heat-labile inclusion bodies and from lecithinase. Growth-curve studies showed that the heat-stable toxin appeared in liver broth cultures during the active growth phase, prior to the formation of spores or inclusion bodies. An attempt to produce the toxic principle from culture media in the absence of bacteria was unsuccessful from sterile inocula both from in vivo and in vitro sources. The LD50 for larvae of Galleria mellonella injected with autoclaved supernatant from a 10-day-old liver broth culture of B. thuringiensis was determined to be 0.00036 ml per larva or 0.002 ml per gram of larvae. Approximately the same level of toxicity was found for another caterpillar, a fly larva, and cockroaches. After larvae of Galleria or Pyrausla have been dead for more than 2 days from infection with B. thuringiensis the bacillus could no longer be recovered. A sublethal amount of the heat-stable toxin injected into old larvae of Galleria delayed emergence of the adults by 30 to 40%. The non-pathogenic Bacillus cereus was found to produce a similar-acting, heat-stable toxin under the same conditions that one is produced by B. thuringiensis.


1971 ◽  
Vol 34 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Antonieta Gaddi Angeles ◽  
E. H. Marth

The following lactic acid bacteria, when tested with the agar-well method, were able to hydrolyze tributyrin and triolein, but not soybean oil: Streptococcus lactis, Streptococcus cremoris, Streptococcus diacetilactis, Streptococcus thermophilus, Leuconostoc mesenteroides, Pediococcus cerevisiae, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus pentosus, and Lactobacillus brevis. Tributyrin only was hydrolyzed by Lactobacillus helveticus. Some free fatty acids were liberated by L. casei, L. delbrueckii, and S. thermophilus in soymilk (1.9% soybean lipids) and in MRS broth fortified with 2.0% soybean oil during a 14-day period of incubation. Although L. casei and L. delbrueckii were more active in soymilk than was S. thermophilus, they released about 10% of the amount of free fatty acids liberated by Candida lipolytica during a similar incubation period.


1954 ◽  
Vol 99 (1) ◽  
pp. 55-63 ◽  
Author(s):  
René J. Dubos ◽  
James G. Hirsch

A stable, water-soluble substance which possesses potent antimycobacterial activity under certain conditions in vitro has been prepared from calf thymus. This substance has been tentatively named thymus peptide. In final concentrations of 1 to 10 µg. per ml. of an albumin medium it inhibits the growth of various strains of mammalian mycobacteria, but manifests only little or no inhibitory activity against a variety of other microbial species. The ability of thymus peptide to inhibit the multiplication of tubercle bacilli diminishes when the inoculum is large, or when the medium is acidic. It is also markedly antagonized by addition of enzymatic hydrolysate of casein or beef heart infusion broth to the culture medium. Thymus peptide does not exert a rapid bactericidal action on tubercle bacilli, but organisms exposed to this compound for longer than 2 weeks could not be made to multiply in ordinary culture media. Substances similar or identical to the thymus peptide preparation could be extracted from calf spleen, sheep thymus, beef lymph nodes, and calf pancreas, but not from calf lung or calf liver.


2021 ◽  
Vol 9 (1) ◽  
pp. 54-64
Author(s):  
Babatunde Kazeem Adeoye ◽  
Elizabeth Funmilayo Aransiola ◽  
Gbenga Alebiowu ◽  
Mary Adejumoke Bisi-Johnson ◽  
Felix Oluwasola Olorunmola ◽  
...  

The study was carried out to isolate, characterize, and study antimicrobial sensitivity of lactic acid bacteria (LAB) from Bambara groundnut. Dried Bambara groundnut was fermented by spontaneous method for seven days and its pH, TTA (Total Titratable acidity) and microbial load monitored for each of the fermentation days. Seven acid-producing cultures were isolated from the sample, and isolates were further classified first by phenotype. Phenotypic and biochemical characteristics led to identification of three bacterial groups. These were followed by in vitro assessment of antimicrobial activity against enteropathogenic bacteria. The most abundant type of LAB distributed in the isolates of fermented Bambara groundnut was Lactobacillus delbrueckii, followed by Lactobacillus casei in two of the isolates. Lactobacillus brevis was found in the remaining two isolates. The growth pattern at different salt concentrations revealed that the isolates were salt tolerant at 2% and 4% while at 6.5% there was no growth. At pH 4.5 and 6.0, there were also growth. The strain evaluated showed in vitro antibacterial activity against five pathogenic microorganisms namely Escherichia coli, Salmonella sp, Shigella sp, Pseudomonas sp and Staphylococcus sp using agar well diffusion method. These results suggested that various LAB were present in Bambara groundnut. The microorganisms isolated were then freeze dried using a freeze drier and then kept at a low temperature in the refrigerator so as to preserve/store the organisms for further processes. This report thereby showed that Bambara groundnut, being an underutilized legume can serve as potential candidate for probiotic neutraceuticals. Int. J. Appl. Sci. Biotechnol. Vol 9(1): 54-64


2001 ◽  
Vol 110 (10) ◽  
pp. 946-951 ◽  
Author(s):  
Rolien H. Free ◽  
G. Jolanda Elving ◽  
Ranny van Weissenbruch ◽  
Henk J. Busscher ◽  
Henny C. vander Mei ◽  
...  

In order to determine the influence of probiotic bacteria on biofilm formation on Groningen and Provox 2 voice prostheses in an artificial throat, we grew biofilms on both types of voice prostheses and exposed them 3 times daily to a probiotic bacterial suspension. As a control, we perfused an artificial throat with phosphate-buffered saline solution. Perfusion with Lactococcus lactis 53 suspension reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 17% and 22% and on the Provox 2 prostheses to 19% and 45%, compared to the number of colony-forming units on the control prosthesis, which was set at 100%. A suspension of Streptococcus thermophilus b reduced the percentage numbers of bacteria and yeasts, respectively, on the Groningen prostheses to 53% and 33% and on the Provox 2 prostheses to 14% and 0%, as compared to the control prosthesis. All other probiotic strains tested caused some reduction in the percentages of bacteria or yeasts, but strong differences between the types of prostheses were observed. In conclusion, L lactis 53 and S thermophilus b strongly reduce the occurrence of yeasts and bacteria in voice prosthetic biofilms.


Molecules ◽  
2019 ◽  
Vol 24 (7) ◽  
pp. 1422 ◽  
Author(s):  
Nurul Farhana Fazilah ◽  
Nurmelissa Hanani Hamidon ◽  
Arbakariya B. Ariff ◽  
Mohd Ezuan Khayat ◽  
Helmi Wasoh ◽  
...  

There has been an explosion of probiotic incorporated based product. However, many reports indicated that most of the probiotics have failed to survive in high quantity, which has limited their effectiveness in most functional foods. Thus, to overcome this problem, microencapsulation is considered to be a promising process. In this study, Lactococcus lactis Gh1 was encapsulated via spray-drying with gum Arabic together with Synsepalum dulcificum or commonly known as miracle fruit. It was observed that after spray-drying, high viability (~109 CFU/mL) powders containing L. lactis in combination with S. dulcificum were developed, which was then formulated into yogurt. The tolerance of encapsulated bacterial cells in simulated gastric juice at pH 1.5 was tested in an in-vitro model and the result showed that after 2 h, cell viability remained high at 1.11 × 106 CFU/mL. Incubation of encapsulated cells in the presence of 0.6% (w/v) bile salts showed it was able to survive (~104 CFU/mL) after 2 h. Microencapsulated L. lactis retained a higher viability, at ~107 CFU/mL, when incorporated into yogurt compared to non-microencapsulated cells ~105 CFU/mL. The fortification of microencapsulated and non-microencapsulated L. lactis in yogurts influenced the viable cell counts of yogurt starter cultures, Lactobacillus delbrueckii subs. bulgaricus and Streptococcus thermophilus.


Author(s):  
Ina Simiţaru ◽  
Rodica Segal

The exopolysaccharides produced by the lactic acid bacteria confer the possibility to obtain fermented dairy products of good quality, with desirable rheological properties, and diverse benefits for health. The capacity of lactic acid bacteria to produce exopolysaccharides is influenced by culture media and the conditions of growth. The purpose of this work was to study the thermophile yogurt culture YF-L 811, which contains Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus. The study was based on the capacity of the culture to produce exopolysaccharides in different temperature conditions and with different ingredients added in culture media. The amount of exopolysaccharides was correlated to viscosity of the yogurt.


2019 ◽  
Vol 20 (12) ◽  
pp. 3060 ◽  
Author(s):  
Ye Yuan ◽  
Xin-Yu Zhang ◽  
Yan Zhao ◽  
Han Zhang ◽  
Yi-Fa Zhou ◽  
...  

Pectate lyases play an important role in pectin degradation, and therefore are highly useful in the food and textile industries. Here, we report on the cloning of an alkaline pectate lyase gene (pppel9a) from Paenibacillus polymyxa KF-1. The full-length gene (1350 bp) encodes for a 449-residue protein that belongs to the polysaccharide lyase family 9 (PL9). Recombinant PpPel9a produced in Escherichia coli was purified to electrophoretic homogeneity in a single step using Ni2+-NTA affinity chromatography. The enzyme activity of PpPel9a (apparent molecular weight of 45.3 kDa) was found to be optimal at pH 10.0 and 40 °C, with substrate preference for homogalacturonan type (HG) pectins vis-à-vis rhamnogalacturonan-I (RG-I) type pectins. Using HG-type pectins as substrate, PpPel9a showed greater activity with de-esterified HGs. In addition, PpPel9a was active against water-soluble pectins isolated from different plants. Using this lyase, we degraded citrus pectin, purified fractions using Diethylaminoethyl (DEAE)-sepharose column chromatography, and characterized the main fraction MCP-0.3. High-performance gel permeation chromatography (HPGPC) analysis showed that the molecular mass of citrus pectin (~230.2 kDa) was reduced to ~24 kDa upon degradation. Ultra-performance liquid chromatography - tandem mass spectrometer (UPLC-MS) and monosaccharide composition analyses demonstrated that PpPel9a worked as an endo-pectate lyase, which acted primarily on the HG domain of citrus pectin. In vitro testing showed that the degradation product MCP-0.3 significantly promotes the growth of Lactobacillus plantarum and L. rhamnosus. In this regard, the enzyme has potential in the preparation of pharmacologically active pectin products.


Sign in / Sign up

Export Citation Format

Share Document