scholarly journals HER3 Differentiates Basal From Claudin Type Triple Negative Breast Cancer and Contributes to Drug and Microenvironmental Induced Resistance

2020 ◽  
Vol 10 ◽  
Author(s):  
Nicoleta Sinevici ◽  
Bahar Ataeinia ◽  
Veronica Zehnder ◽  
Kevin Lin ◽  
Lauren Grove ◽  
...  

Triple Negative Breast Cancer (TNBC) is an aggressive form of Breast Cancer (BC). Numerous kinase inhibitors (KI) targeting different pathway nodes have shown limited benefit in the clinical setting. In this study, we aim to characterize the extent of HER3 reliance and to define the effect of Neuregulin (NRG) isoforms in TNBCs. Basal and Claudin type TNBC cell lines were treated with a range of small molecule inhibitors, in the presence or absence of the HER3 ligand NRG. Single agent and combination therapy was also evaluated in human cancer cell lines through viability and biochemical assessment of the AKT/MAPK signaling pathway. We show that Basal (BT20, HCC-70, and MDA-MB-468) and Claudin type (MDA-MB-231, BT-549) TNBC cell lines displayed differential reliance on the HER family of receptors. Expression and dynamic HER3 upregulation was predominant in the Basal TNBC subtype. Furthermore, the presence of the natural ligand NRG showed potent signaling through the HER3-AKT pathway, significantly diminishing the efficacy of the AKT and PI3K inhibitors tested. We report that NRG augments the HER3 feedback mechanism for continued cell survival in TNBC. We demonstrate that combination strategies to effectively block the EGFR-HER3-AKT pathway are necessary to overcome compensatory mechanisms to NRG dependent and independent resistance mechanisms. Our findings suggests that the EGFR-HER3 heterodimer forms a major signaling hub and is a key player in tumorigenesis in Basal but not Claudin type TNBC tested. Thus, HER3 could potentially serve as a biomarker for identifying patients in which targeted therapy against the EGFR-HER3-AKT axis would be most valuable.

Author(s):  
Xiuzhi Zhu ◽  
Li Chen ◽  
Binhao Huang ◽  
Xiaoguang Li ◽  
Liu Yang ◽  
...  

Abstract Background PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients with BRCA mutations, and their efficacy is even more limited in triple-negative breast cancer (TNBC) due to clinical primary and acquired resistance. Here, we found that the efficacy of the PARPi olaparib in TNBC can be improved by combination with the CDK4/6 inhibitor (CDK4/6i) palbociclib. Methods We screened primary olaparib-sensitive and olaparib-resistant cell lines from existing BRCAmut/TNBC cell lines and generated cells with acquired olaparib resistance by gradually increasing the concentration. The effects of the PARPi olaparib and the CDK4/6i palbociclib on BRCAmut/TNBC cell lines were examined in both sensitive and resistant cells in vitro and in vivo. Pathway and gene alterations were assessed mechanistically and pharmacologically. Results We demonstrated for the first time that the combination of olaparib and palbociclib has synergistic effects against BRCAmut/TNBC both in vitro and in vivo. In olaparib-sensitive MDA-MB-436 cells, the single agent olaparib significantly inhibited cell viability and affected cell growth due to severe DNA damage. In olaparib-resistant HCC1937 and SUM149 cells, single-agent olaparib was ineffective due to potential homologous recombination (HR) repair, and the combination of olaparib and palbociclib greatly inhibited HR during the G2 phase, increased DNA damage and inhibited tumour growth. Inadequate DNA damage caused by olaparib activated the Wnt signalling pathway and upregulated MYC. Further experiments indicated that the overexpression of β-catenin, especially its hyperphosphorylation at the Ser675 site, activated the Wnt signalling pathway and mediated olaparib resistance, which could be strongly inhibited by combined treatment with palbociclib. Conclusions Our data provide a rationale for clinical evaluation of the therapeutic synergy of the PARPi olaparib and CDK4/6i palbociclib in BRCAmut/TNBCs with high Wnt signalling activation and high MYC expression that do not respond to PARPi monotherapy.


Breast Cancer ◽  
2021 ◽  
Author(s):  
Yingzi Zhang ◽  
Jiao Tian ◽  
Chi Qu ◽  
Yang Peng ◽  
Jinwei Lei ◽  
...  

Abstract Background Recent studies have indicated that serpin peptidase inhibitor, clade A, member 3 (SERPINA3) is a potential marker associated with tumor progression, which connoted that SERPINA3 is related to malignant phenotypes in cancer. However, the biological function of SERPINA3 in breast cancer (BC) remains unclear. Methods Bioinformatics data were downloaded from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Immunohistochemical staining (IHC) was conducted to determine SERPINA3 expression. With strong aggressive abilities, triple-negative breast cancer (TNBC) cell lines (MDA-MB-231, BT549 and MDA-MB-436) were obtained to examine SERPINA3 expression and functions. Wound healing and Transwell assays were performed to measure cell migration and invasion. Cell Counting Kit-8 (CCK-8) assay was conducted to detect cell proliferation abilities and cell viabilities. Results SERPINA3 was upregulated in BC tissues. Functional assays suggested that overexpression of SERPINA3 significantly promoted cell proliferation, where migration and invasion of TNBC cells were accelerated. Knockdown of SERPINA3 had the opposite effects. These results causing by overexpression of SERPINA3 were also confirmed in non-TNBC cell lines. Overexpression of SERPINA3 remarkably enhanced the epithelial–mesenchymal transition (EMT) by upregulating the EMT markers and EZH2. In addition, the overexpression of SERPINA3 reduced the sensitivity of TNBC cells to cisplatin. Conclusion SERPINA3 can regulate the migration, invasion and EMT of TNBC cells and increased expression of SERPINA3 confers resistance to cisplatin in TNBC cells. We discern it is required for the regulation of BC progression and is a critical target for the clinical treatment of BC.


BMC Cancer ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Pradip Shahi Thakuri ◽  
Megha Gupta ◽  
Sunil Singh ◽  
Ramila Joshi ◽  
Eric Glasgow ◽  
...  

Abstract Background Cell migration and invasion are essential processes for metastatic dissemination of cancer cells. Significant progress has been made in developing new therapies against oncogenic signaling to eliminate cancer cells and shrink tumors. However, inherent heterogeneity and treatment-induced adaptation to drugs commonly enable subsets of cancer cells to survive therapy. In addition to local recurrence, these cells escape a primary tumor and migrate through the stroma to access the circulation and metastasize to different organs, leading to an incurable disease. As such, therapeutics that block migration and invasion of cancer cells may inhibit or reduce metastasis and significantly improve cancer therapy. This is particularly more important for cancers, such as triple negative breast cancer, that currently lack targeted drugs. Methods We used cell migration, 3D invasion, zebrafish metastasis model, and phosphorylation analysis of 43 protein kinases in nine triple negative breast cancer (TNBC) cell lines to study effects of fisetin and quercetin on inhibition of TNBC cell migration, invasion, and metastasis. Results Fisetin and quercetin were highly effective against migration of all nine TNBC cell lines with up to 76 and 74% inhibitory effects, respectively. In addition, treatments significantly reduced 3D invasion of highly motile TNBC cells from spheroids into a collagen matrix and their metastasis in vivo. Fisetin and quercetin commonly targeted different components and substrates of the oncogenic PI3K/AKT pathway and significantly reduced their activities. Additionally, both compounds disrupted activities of several protein kinases in MAPK and STAT pathways. We used molecular inhibitors specific to these signaling proteins to establish the migration-inhibitory role of the two phytochemicals against TNBC cells. Conclusions We established that fisetin and quercetin potently inhibit migration of metastatic TNBC cells by interfering with activities of oncogenic protein kinases in multiple pathways.


2021 ◽  
Author(s):  
Jianli Ma ◽  
Wenhui Zhao ◽  
Han Zhang ◽  
Zhong Chu ◽  
Huili Liu ◽  
...  

Abstract BackgroundBreast cancer is the main cause of death among women worldwide. More and more long non-coding RNAs (lncRNAs) have been identified as oncogenes or tumor suppressors during cancer development. However, whether ANRIL is involved in drug resistance in triple-negative breast cancer (TNBC) has not been investigated. MethodsLuciferase reporter assay was conducted to verify the binding of miR-125a and ANRIL. RT-PCR and western blot were performed to detect the expression of miR-125a, ANRIL and ENO1. Gene silence and overexpression experiments as well as CCK-8 and colony formation assays on TNBC cell lines were performed to determine the regulation of molecular pathways. Glycolysis analysis was performed with Seahorse extracellular flux methodology. ResultsANRIL expression in TNBC patients and TNBC cells was examined and we found that ANRIL expression was upregulated in both TNBC patients and TNBC cell lines. Knockdown of ANRIL increased the cytotoxic effect of ADR and inhibited HIF-1α-dependent glycolysis in TNBC cells. In addition, we found that ANRIL negatively regulated miR-125a expression in TNBC cell lines. Besides, a dual-luciferase reporter assay proved ANRIL functioned as a sponger of miR-125a. Further investigation revealed that ENO1 was a target of miR-125a and positively regulated by ANRIL in TNBC cells. Additionally, ANRIL upregulation reversed miR-125-mediated inhibition on HIF-1α-dependent glycolysis in TNBC cells. More notably, 2-deoxy-glucose (2-DG) attenuated ANRIL-induced increase of drug resistance in TNBC cells. ConclusionsTaken together, our study was the first to identify that knockdown of ANRIL plays an active role in overcoming the drug resistance in TNBC by inhibiting glycolysis through the miR-125a/ENO1 pathway, which maybe serve useful for the development of novel therapeutic targets.


2020 ◽  
Author(s):  
Todd Pitts ◽  
Dennis M Simmons ◽  
Stacey M Bagby ◽  
Sarah J Hartman ◽  
Betelehem W Yacob ◽  
...  

Abstract Background: Triple-negative breast cancer (TNBC) is an aggressive subtype defined by lack of hormone receptor expression and non-amplified HER2. Adavosertib (AZD1775) is a potent, small molecule, ATP-competitive inhibitor of the Wee1 kinase that potentiates the activity of many DNA-damaging chemotherapeutics and is currently in clinical development for multiple indications. The purpose of this study was to investigate the combination of AZD1775 and capecitabine/5-FU in preclinical TNBC models. Methods: TNBC cell lines were treated with AZD1775 and 5-FU and cellular proliferation was assessed in real-time using IncuCyte® Live Cell Analysis. Apoptosis was assessed via the Caspase-Glo 3/7 assay system. Western blotting was used to assess changes in expression of downstream effectors. TNBC PDX models were treated with AZD1775, capecitabine, or the combination and assessed for tumor growth inhibition. Results: From the initial PDX screen, two of the four TNBC PDX models demonstrated a better response in the combination treatment than either of the single agents. As confirmation, two PDX models were expanded for statistical comparison . Both PDX models demonstrated a significant growth inhibition in the combination versus either of the single agents. (TNBC012, p<0.05 combo vs adavosertib or capecitabine, TNBC013, p<0.01 combo vs adavosertib or capecitabine ). An enhanced antiproliferative effect was observed in the adavosertib/5-FU combination treatment as measured by live cell analysis. An increase in apoptosis was observed in two of the four cell lines in the combination when compared to single agent treatment. Treatment with single agent adavosertib resulted in an increase in p-CDC2 in a dose dependent manner that was also observed in the combination treatment. Similar results were observed with γH2AX in two of the four cell lines tested. No significant changes were observed in Bcl-xL following treatment in any of the cell lines. Conclusions: The combination of adavosertib and capecitabine/5-FU demonstrated enhanced combination effects both in vitro and in vivo in preclinical models of TNBC. These results support the clinical investigation of this combination in patients with TNBC, including those with brain metastasis given the CNS penetration of both agents.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 506 ◽  
Author(s):  
Lamyae El Khalki ◽  
Virginie Maire ◽  
Thierry Dubois ◽  
Abdelmajid Zyad

Triple negative breast cancer (TNBC) is an aggressive breast cancer subtype. Non-available targeted therapy for TNBC represents its biggest treatment challenge. Thus, finding new promising effective drugs is urgently needed. In the present study, we investigated how berberine, a natural isoquinoline, impairs the survival of TNBC cells in both cellular and molecular levels. Our experimental model was based on the use of eight TNBC cell lines: MDA-MB-468, MDA-MB-231, HCC70, HCC38, HCC1937, HCC1143, BT-20, and BT-549. Berberine was cytotoxic against all treated TNBC cell lines. The most sensitive cell lines were HCC70 (IC50 = 0.19 µM), BT-20 (IC50 = 0.23 µM) and MDA-MB-468 (IC50 = 0.48 µM). Using flow cytometry techniques, berberine, at 0.5 and 1 µM for 120 and 144 h, not only induced cell cycle arrest, at G1 and/or G2/M phases, but it also triggered significant apoptosis. At the molecular level, these results are consistent with the expression of their related proteins using Western blot assays. Interestingly, while berberine was cytotoxic against TNBC cells, it had no effect on the viability of normal human breast cells MCF10A cultured in a 3D matrigel model. These results suggest that berberine may be a good potential candidate for TNBC drug development.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. e14099-e14099 ◽  
Author(s):  
Naoise C Synnott ◽  
Matthias R Bauer ◽  
Stephen F. Madden ◽  
Alyson M. Murray ◽  
Rut Klinger ◽  
...  

e14099 Background:The identification of a targeted therapy for patients with triple-negative breast cancer (TNBC) is one of the most urgent needs in breast cancer therapeutics. Since the p53 gene is mutated in approximately 80% of TNBC patients, it is a potential therapeutic target for this form of breast cancer. PK11007 is a 2-sulfonypyrimidine that stabilizes and reactivates mutant p53 (Bauer et al, PNAS 2016). The compound recently was reported to preferentially decrease viability in p53-compromised cancer cells. The aim of this investigation was to evaluate PK11007 as a potential new treatment for TNBC. Methods: Cell viability was determined using the MTT assay. Apoptosis was detected using Annexin V Apoptosis Detection Kit. Migration was determined by Transwell migration assay. Knockdowns of p53 protein were carried out using predesigned Flexitube sequences (Qiagen). Results: IC50 values for inhibition of proliferation by PK11007 in the panel of 17 breast cell lines ranged from 2.3 to 42.2 μM. There were significantly lower IC50values for TNBC than for non-TNBC cell lines (p = 0.03) and for p53-mutated cell lines compared with p53 WT cells (p = 0.003). Response to PK11007 however, was independent of ER or HER2 status of the cells. In addition, PK11007 induced apoptosis and inhibited migration in p53 mutant cell lines. Using RNAseq and gene ontogeny analysis, we found that PK11007 altered the expression of genes enriched in pathways involved in regulated cell death, regulation of apoptosis, signal transduction, protein refolding and locomotion. To establish if PK11007 acts by targeting mutant p53, we used siRNA to knockdown p53 in 3 p53-mutated TNBC cell lines. Reduction in p53 protein levels resulted in a significant decrease in the growth inhibitory effects of PK11007, in all 3 cell lines investigated, suggesting that PK11007 mediates growth inhibition via p53. The observations that PK11007 inhibited cell growth, induced apoptosis, blocked cell migration and altered genes involved in cell death, are all consistent with the ability of PK11007 to activate mutant p53. Conclusions: Based on our data, we conclude that targeting mutant p53 with PK11007 is a potential approach for treating p53-mutated TNBC.


2022 ◽  
Vol 11 ◽  
Author(s):  
Xinyu Zhou ◽  
Abel Soto-Gamez ◽  
Fleur Nijdam ◽  
Rita Setroikromo ◽  
Wim J. Quax

Triple-negative breast cancer (TNBC) is a highly aggressive breast cancer subtype independent of estrogen receptor, progesterone receptor, or human epidermal growth factor receptor 2. It has a poor prognosis and high recurrence. Due to its limited treatment options in the clinic, novel therapies are urgently needed. Single treatment with the death receptor ligand TRAIL was shown to be poorly effective. Recently, we have shown that artemisinin derivatives enhance TRAIL-induced apoptosis in colon cancer cells. Here, we utilized transferrin (TF) to enhance the effectiveness of dihydroartemisinin (DHA) in inducing cell death in TNBC cell lines (MDA-MB-231, MDA-MB-436, MDA-MB-468 and BT549). We found that the combination of DHA-TF and the death receptor 5-specific TRAIL variant DHER leads to an increase in DR5 expression in all four TNBC cell lines, while higher cytotoxicity was observed in MDA-MB-231, and MDA-MB-436. All the data point to the finding that DHA-TF stimulates cell death in TNBC cells, while the combination of DHA-TF with TRAIL variants will trigger more cell death in TRAIL-sensitive cells. Overall, DHA-TF in combination with TRAIL variants represents a potential novel combination therapy for triple-negative breast cancer.


2021 ◽  
Vol 12 ◽  
Author(s):  
Shuvasree SenGupta ◽  
Lauren E. Hein ◽  
Yang Xu ◽  
Jason Zhang ◽  
Jamie R. Konwerski ◽  
...  

Tumor associated neutrophils (TANs) are frequently detected in triple-negative breast cancer (TNBC). Recent studies also reveal the importance of neutrophils in promoting tumor progression and metastasis during breast cancer. However, the mechanisms regulating neutrophil trafficking to breast tumors are less clear. We sought to determine whether neutrophil trafficking to breast tumors is determined directly by the malignant potential of cancer cells. We found that tumor conditioned media (TCM) harvested from highly aggressive, metastatic TNBC cells induced a polarized morphology and robust neutrophil migration, while TCM derived from poorly aggressive estrogen receptor positive (ER+) breast cancer cells had no activity. In a three-dimensional (3D) type-I collagen matrix, neutrophils migrated toward TCM from aggressive breast cancer cells with increased velocity and directionality. Moreover, in a neutrophil-tumor spheroid co-culture system, neutrophils migrated with increased directionality towards spheroids generated from TNBC cells compared to ER+ cells. Based on these findings, we next sought to characterize the active factors secreted by TNBC cell lines. We found that TCM-induced neutrophil migration is dependent on tumor-derived chemokines, and screening TCM elution fractions based on their ability to induce polarized neutrophil morphology revealed the molecular weight of the active factors to be around 12 kDa. TCM from TNBC cell lines contained copious amounts of GRO (CXCL1/2/3) chemokines and TGF-β cytokines compared to ER+ cell-derived TCM. TCM activity was inhibited by simultaneously blocking receptors specific to GRO chemokines and TGF-β, while the activity remained intact in the presence of either single receptor inhibitor. Together, our findings establish a direct link between the malignant potential of breast cancer cells and their ability to induce neutrophil migration. Our study also uncovers a novel coordinated function of TGF-β and GRO chemokines responsible for guiding neutrophil trafficking to the breast tumor.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Jiani Guo ◽  
Xuesong Yi ◽  
Zhuqing Ji ◽  
Mengchu Yao ◽  
Yu Yang ◽  
...  

Background. Triple-negative breast cancer (TNBC) remains the most incurable subtype of breast cancer owing to high heterogeneity, aggressive nature, and lack of treatment options. It is generally acknowledged that epithelial-mesenchymal transition (EMT) is the key step in tumor metastasis. Methods. With the application of TCGA and GEO databases, we identified EMT-related lncRNAs by the Cox univariate regression analysis. Optimum risk scores were calculated and used to divide TNBC patients into high-/low-risk subgroups by the median value using the Lasso regression analysis. The Kaplan–Meier and ROC curve analyses were applied for model validation. Then, we assessed the risk model from multi-omic aspects including immune infiltration, drug sensitivity, mutability spectrum, signaling pathways, and clinical indicators. We also analyzed the expression pattern of lncRNAs involved in the model using qRT-PCR in TNBC cell lines and constructed the ceRNA network. Results. The risk model was composed of EMT-related long noncoding RNAs (lncRNAs), which seemed to be valuable in the prognostic prediction of TNBC patients. The model could act as an independent prognostic factor of TNBC and showed a robust prognostic ability in the stratification analysis. Further investigation demonstrated that the expression of lncRNAs was different between high aggressive and low aggressive TNBC cell lines, as well as TNBC patients. Conclusions. Together, our study successfully established a risk model with great accuracy and efficacy in the prognostic prediction of TNBC patients.


Sign in / Sign up

Export Citation Format

Share Document