scholarly journals Targeting ACLY Attenuates Tumor Growth and Acquired Cisplatin Resistance in Ovarian Cancer by Inhibiting the PI3K–AKT Pathway and Activating the AMPK–ROS Pathway

2021 ◽  
Vol 11 ◽  
Author(s):  
Xuan Wei ◽  
Juanjuan Shi ◽  
Qianhan Lin ◽  
Xiaoxue Ma ◽  
Yingxin Pang ◽  
...  

Background: Ovarian cancer is the most lethal female genital malignancy. Although cisplatin is the first-line chemotherapy to treat ovarian cancer patients along with debulking surgeries, its efficacy is limited due to the high incidence of cisplatin resistance. ATP citrate lyase (ACLY) has been shown to be a key metabolic enzyme and is associated with poor prognosis in various cancers, including ovarian cancer. Nevertheless, no studies have probed the mechanistic relationship between ACLY and cisplatin resistance.Methods: Survival analysis was mainly carried out online. Bioinformatic analysis was performed in R/R studio. Proliferative activity was measured by MTT and colony formation assays. Cell cycle and apoptosis analysis were performed by flow cytometry. The acquired-cisplatin-resistant cell line A2780/CDDP was generated by exposing A2780 to cisplatin at gradually elevated concentrations. MTT assay was used to calculate IC50 values of cisplatin. A xenograft tumor assay was used test cell proliferation in vivo.Results: Higher expression of ACLY was found in ovarian cancer tissue and related to poor prognosis. Knockdown of ACLY in A2780, SKOV3, and HEY cells inhibited cell proliferation, caused cell-cycle arrest by modulating the P16–CDK4–CCND1 pathway, and induced apoptosis probably by inhibiting p-AKT activity. Bioinformatic analysis of the GSE15709 dataset revealed upregulation of ACLY and activation of PI3K–AKT pathway in cells with acquired cisplatin resistance, in line with observations on A2780/CDDP cells that we generated. Knockdown of ACLY alleviated cisplatin resistance, and works synergistically with cisplatin treatment to induce apoptosis in A2780/CDDP cells by inhibiting the PI3K–AKT pathway and activating AMPK–ROS pathway. The ACLY-specific inhibitor SB-204990 showed the same effect. In A2780/CDDP cells, AKT overexpression could attenuate cisplatin re-sensitization caused by ACLY knockdown.Conclusions: Knockdown of ACLY attenuated cisplatin resistance by inhibiting the PI3K–AKT pathway and activating the AMPK–ROS pathway. These findings suggest that a combination of ACLY inhibition and cisplatin might be an effective strategy for overcoming cisplatin resistance in ovarian cancer.

2020 ◽  
Author(s):  
Xuan Wei ◽  
Juanjuan Shi ◽  
Qianhan Lin ◽  
Xiaoxue Ma ◽  
Yingxin Pang ◽  
...  

Abstract Background: Ovarian cancer is the most lethal female genital malignancy. Though cisplatin is still the first-line chemotherapy to treat ovarian cancer patients with debulking surgeries, its efficacy is limited due to the high-incidence of cisplatin resistance. ATP citrate lyase (ACLY) has been proved to be a key metabolic enzyme and was related to poor prognosis in various cancer, including ovarian cancer. Nevertheless, there has not been any research elucidating the relationship between ACLY and cisplatin resistance and the mechanism of how it works.Methods: Survival analysis was mainly carried out on the website. Bioinformatic analysis was performed in R/R studio. Proliferative activity was measured by MTT assay and colony formation assay. Cell cycle and apoptosis analysis were performed by flow cytometry. Acquired cisplatin resistant cell line A2780/CDDP was generated from A2780 by exposing to gradually elevated concentration of cisplatin. MTT assay was used to calculate IC50 of cisplatin. Xenograft tumor assay was used test cell proliferation in vivo.Results: Higher expression of ACLY was found in ovarian cancer tissue and related to poor prognosis. Knockdown of ACLY in A2780, SKOV3 and HEY cells inhibited cell proliferation, caused cell cycle arrest by modulating P16/CDK4/CCDN1 pathway and induced apoptosis probably by inhibiting p-AKT activity. Bioinformatic analysis of GSE15709 dataset revealed upregulation of ACLY and activation of PI3K/AKT pathway in acquired cisplatin resistant cells, in line with the results of A2780/CDDP cells generated by us. Knockdown of ACLY could alleviate cisplatin resistance and work synergistically with cisplatin treatment in inducing apoptosis in A2780/CDDP cells, by inhibiting PI3K/AKT pathway and activating AMPK/ROS pathway. ACLY specific inhibitor SB-204990 also showed the same effect. In A2780/CDDP cells, AKT overexpression could destroy cisplatin re-sensitization caused by ACLY knockdown. Conclusions: Knockdown of ACLY attenuated cisplatin resistance by inhibiting PI3K/AKT pathway and activating AMPK/ROS pathway. These findings suggested that combination of ACLY inhibition and cisplatin could be an effective strategy for overcoming cisplatin resistance in ovarian cancer.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hua Guo ◽  
Chunfang Ha ◽  
Hui Dong ◽  
Zhijuan Yang ◽  
Yuan Ma ◽  
...  

Abstract Background Ovarian cancer (OC) is a gynecological malignancy with a high mortality. Cisplatin-based treatment is the typical treatment regimen for OC patients; however, it may cause unfavorable resistance. The current study intends to explore the function of cancer-associated fibroblast (CAF)-derived exosomal microRNA-98-5p (miR-98-5p) in cisplatin resistance in OC, and the participation of CDKN1A. Methods Bioinformatics analysis was employed in order to obtain cisplatin resistance-related differential genes in OC as well as possible upstream regulatory miRs. After gain- and loss-of-function assays in OC cells, RT-qPCR and western blot analysis were employed to measure CDKN1A and miR-98-5p expression. Dual luciferase reporter assay was applied to verify the targeting relationship between miR-98-5p and CDKN1A. CAFs were treated with miR-98-5p inhibitor, and then exosomes were isolated and co-cultured with OC cells. CCK-8, colony formation and flow cytometry assays were conducted to assess cell proliferation, cell colony formation, cell cycle distribution and cell apoptosis, respectively. At last, xenograft tumor in nude mice was carried out to test whether exosomal miR-98-5p could affect cisplatin resistance in OC in vivo. Results CDKN1A was highly expressed in cisplatin-sensitive OC cell lines, and silencing CDKN1A significantly promoted proliferation and cell cycle entry but decreased apoptosis in cisplatin-sensitive OC cells. miR-98-5p targeted CDKN1A to inhibit CDKN1A expression. CAF-derived exosomal miR-98-5p increased OC cell proliferation and cell cycle entry, but suppressed cell apoptosis. Furthermore, exosomal miR-98-5p promoted cisplatin resistance and downregulated CDKN1A in nude mice. Conclusion Collectively, CAF-derived exosomes carrying overexpressed miR-98-5p promote cisplatin resistance in OC by downregulating CDKN1A.


2018 ◽  
Vol 50 (3) ◽  
pp. 810-822 ◽  
Author(s):  
Nan Sheng ◽  
Yun-Zhao Xu ◽  
Qing-Hua Xi ◽  
Hai-Yan Jiang ◽  
Chen-Yi Wang ◽  
...  

Background/Aims: This study aimed to investigate the expression and prognostic value of kinesin family member 2A (KIF2A) and the suppression effects of microRNA-206 (miR-206) on KIF2A in ovarian cancer. Methods: Ovarian cancer tissues from patients and ovarian cancer cell lines (A2780 and SKOV3) were used in this study. miR-206 mimics and control were transiently transfected into cells. RT-qPCR was performed to detect KIF2A mRNA and miR-206 expression levels, Western blot was performed to detect KIF2A protein levels, Dual-Luciferase Reporter Assay was used to examine the inhibition effects of miR-206 on KIF2A mRNA, immunohistochemical staining was used to examine the expression of KIF2A in tissue sections. CCK-8, transwell and Annexin-V-FITC/Propidium Iodide staining with flow cytometry were used to detect the cell proliferation, migration/invasion, and apoptosis respectively. Results: Our study explored the expression profiles of KIF2A and miR-206 in the patients with ovarian cancer. We found that overexpression of KIF2A was associated with a poor prognosis in ovarian cancer. We also found that KIF2A mRNA contains two target sites for miR-206 binding and confirmed that miR-206 directly suppresses KIF2A; inhibits ovarian cancer cell proliferation, migration, and invasion; and induces apoptosis. Conclusion: The results suggest KIF2A could serve a valuable prognostic indicator in ovarian cancer and provide a rationale for treatment of ovarian cancer by targeting KIF2A via miR-206.


2020 ◽  
Author(s):  
Jianwei Zhang ◽  
Zhongmin Lan ◽  
Guotong Qiu ◽  
Hu Ren ◽  
Yajie Zhao ◽  
...  

Abstract Background: Pancreatic cancer is a malignant tumor with high mortality. Acidic nuclear phosphoprotein 32 family member E (ANP32E), a specific H2A.Z chaperone, has been shown to contribute to breast cancer development. However, the significance of ANP32E in pancreatic cancer is poorly understood. This study aimed to investigate the role of ANP32E in pancreatic cancer. Methods: The expression of ANP32E in 179 pancreatic cancer tissues and 171 normal tissues, and the correlation between ANP32E expression and patients’ survival were analyzed from the TCGA database. ANP32E was over-expressed and silenced using lentivirus. siRNA was used to knock down β-catenin. CCK8, colony formation, cell cycle and transwell experiments were performed to determine cell proliferation and migration. qRT-PCR and Western blot were conducted to detect mRNA and protein expression. Results: ANP32E was up-regulated in pancreatic cancer tissues and cells. Up-regulation of ANP32E predicted poor prognosis in pancreatic cancer patients. Lentivirus-mediated knockdown of ANP32E suppressed the proliferation, colony growth and migration of PANC1 and MIA cells. By contrast, ANP32E over-expression promoted the proliferation and migration of both cells. In addition, ANP32E accelerated the cell cycle progression in PANC1 and MIA cells. Molecular experiments showed that ANP32E activated β-catenin/cyclin D1 signaling. Silencing of β-catenin reduced cell proliferation and migration in ANP32E over-expressed cells. Conclusion: Our results propose that ANP32E functions as an oncogene in pancreatic cancer via activating β-catenin.


2017 ◽  
Vol 41 (4) ◽  
pp. 1519-1531 ◽  
Author(s):  
Beibei Bie ◽  
Jin Sun ◽  
Jun Li ◽  
Ying Guo ◽  
Wei Jiang ◽  
...  

Background/Aims: Baicalein has been shown to possess significant anti-hepatoma activity by inhibiting cell proliferation. Whether the anti-proliferative effect of baicalein is related to its modulation of miRNA expression in hepatocellular carcinoma (HCC) is still unknown. Methods: The anti-proliferative effects of baicalein on HCC cell line Bel-7402 was assessed by detecting the proliferation activity, cell cycle distribution, expression changes of p21/CDKN1A, P27/CDKN1B, total Akt and phosphoryted AKT. Microarray analysis was conducted to determine the miRNA expression profiles in baicalein-treated or untreated Bel-7402 cells and then validated by qRT-PCR in two HCC cell lines (Bel-7402 and Hep3B). The gain-of-function of miR-3127-5p was performed by detecting anti-proliferative effects after transfecting miRNA mimics in cells. Finally, the expression level of miR-3127-5p in different HCC cell lines was determined by qRT-PCR. Results: Baicalein was able to inhibit the proliferation of Bel-7402 cells by inducing cell cycle arrest at the S and G2/M phase via up-regulating the expression of p21/CDKN1A and P27/CDKN1B and suppressing the PI3K/Akt pathway. Baicalein could alter the miRNA expression profiles in Bel-7402 cells. Putative target genes for differentially expressed miRNAs could be enriched in terms of cell proliferation regulation, cell cycle arrest and were mainly involved in MAPK, PI3K-Akt, Wnt, Hippo and mTOR signaling pathways. MiR- 3127-5p, one of up-regulated miRNAs, exhibits low expression level in several HCC cell lines and its overexpression could inhibit cell growth of Bel-7402 and Hep3B cell lines by inducing S phase arrest by up-regulating the expression of p21and P27 and repressing the PI3K/Akt pathway. Conclusions: Modulation of miRNA expression may be an important mechanism underlying the anti-hepatoma effects of baicalein.


Sign in / Sign up

Export Citation Format

Share Document