scholarly journals Fenretinide Acts as Potent Radiosensitizer for Treatment of Rhabdomyosarcoma Cells

2021 ◽  
Vol 11 ◽  
Author(s):  
Eva Brack ◽  
Sabine Bender ◽  
Marco Wachtel ◽  
Martin Pruschy ◽  
Beat W. Schäfer

Fusion-positive rhabdomyosarcoma (FP-RMS) is a highly aggressive childhood malignancy which is mainly treated by conventional chemotherapy, surgery and radiation therapy. Since radiotherapy is associated with a high burden of late side effects in pediatric patients, addition of radiosensitizers would be beneficial. Here, we thought to assess the role of fenretinide, a potential agent for FP-RMS treatment, as radiosensitizer. Survival of human FP-RMS cells was assessed after combination therapy with fenretinide and ionizing radiation (IR) by cell viability and clonogenicity assays. Indeed, this was found to significantly reduce cell viability compared to single treatments. Mechanistically, this was accompanied by enhanced production of reactive oxygen species, initiation of cell cycle arrest and induction of apoptosis. Interestingly, the combination treatment also triggered a new form of dynamin-dependent macropinocytosis, which was previously described in fenretinide-only treated cells. Our data suggest that fenretinide acts in combination with IR to induce cell death in FP-RMS cells and therefore might represent a novel radiosensitizer for the treatment of this disease.

2004 ◽  
Vol 287 (2) ◽  
pp. L448-L453 ◽  
Author(s):  
Thomas Geiser ◽  
Masanobu Ishigaki ◽  
Coretta van Leer ◽  
Michael A. Matthay ◽  
V. Courtney Broaddus

Reactive oxygen species (ROS) are released into the alveolar space and contribute to alveolar epithelial damage in patients with acute lung injury. However, the role of ROS in alveolar repair is not known. We studied the effect of ROS in our in vitro wound healing model using either human A549 alveolar epithelial cells or primary distal lung epithelial cells. We found that H2O2 inhibited alveolar epithelial repair in a concentration-dependent manner. At similar concentrations, H2O2 also induced apoptosis, an effect seen particularly at the edge of the wound, leading us to hypothesize that apoptosis contributes to H2O2-induced inhibition of wound repair. To learn the role of apoptosis, we blocked caspases with the pan-caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp (zVAD). In the presence of H2O2, zVAD inhibited apoptosis, particularly at the wound edge and, most importantly, maintained alveolar epithelial wound repair. In H2O2-exposed cells, zVAD also maintained cell viability as judged by improved cell spreading and/or migration at the wound edge and by a more normal mitochondrial potential difference compared with cells not treated with zVAD. In conclusion, H2O2 inhibits alveolar epithelial wound repair in large part by induction of apoptosis. Inhibition of apoptosis can maintain wound repair and cell viability in the face of ROS. Inhibiting apoptosis may be a promising new approach to improve repair of the alveolar epithelium in patients with acute lung injury.


2004 ◽  
Vol 112 (3) ◽  
pp. 385-392 ◽  
Author(s):  
Young-Hwa Kang ◽  
Eunmyong Lee ◽  
Moon-Kyung Choi ◽  
Ja-Lok Ku ◽  
So Hee Kim ◽  
...  

Blood ◽  
2018 ◽  
Vol 132 (Supplement 1) ◽  
pp. 5148-5148
Author(s):  
Andoni Garitano-Trojaola ◽  
Eva Teufel ◽  
Matteo Claudio Da Via' ◽  
Ana Sancho ◽  
Nadine Rodhes ◽  
...  

Abstract Secondary Acute Myeloid Leukemia (sAML) accounts for 10-30% of all AML. It arises from a preexisting clonal disorder of hematopoiesis, such as myelodysplastic syndromes (MDS) or chronic myeloproliferative neoplasia (cMPN) in most cases (60-70%) or from exposure to a leukemogenic agent e.g. chemotherapy. sAML is generally considered to be of unfavorable prognosis, as treatment sensitivity is reduced, compared to de novo AML (dnAML) and overall survival is shortened. The incidence of AML associated NRAS are similar between sAML and dnAML (10 to 15%, Jelena D. Milosevic et al.). Prognostic impact of such mutations have been controversially discussed, but have been linked to favorable response to high dose cytarabine treatment in dnAML patients (Andreas Neubauer et al.), thus providing the first example of an oncogenic mutation impacting drug response in dnAML. This effect, however, has not yet been shown in sAML, therefore the aim of this work is to study the role of mutated NRAS in the response to chemotherapy and the hypomethylating agent (HMA) 5-azacitidine in sAML. We utilized two sAML cell lines SET-2 and HEL (both NRAS wildtype) in which we stably introduced the NRAS WT and the known activating hotspot mutation NRAS G12D using the sleeping Beauty technology. The dose-response assays of conventional chemotherapy and 5-azacitidine were carried out in the parental cell lines (SET-2/HEL) compared to NRAS WT (SET-2 NRAS WT/HEL NRAS WT) and NRAS G12D (SET-2 NRAS G12D/HEL NRAS G12D). In contrast to our expectations, both NRAS G12D mutation harboring cell lines, SET-2 and HEL developed resistance to cytarabine, idarubicin and 5-azacytidine, whereas the ones with wildtype NRAS remained susceptible to the drugs. To reverse the resistance we tested the MEK inhibitors Binimetinib and Trametinib in our SET-2 NRAS G12D cell line model according to recent reports about preclinical efficacy of MEK inhibition in NRAS mutant dnAML cells (Michael R. Burgess et al.). And in fact, single agent Binetimib and Trametinib treatments reduced cell viability by 20% at 48 hours. Strikingly, in combination with 5-azacitidine, Binimetinib and Trametinib treatments led to a viability reduction by 90%. Next we induced necroptosis in our NRAS mutant cell line models through the combination of Birinapant (SMAC mimetics) and Emricasan (Inhibitor of Caspase 8), as recently described by Brumatti et al. and were, in addition, able to reduce the cell viability by 60 %. In summary, we provide first evidence, that in contrast to dnAML, activating NRAS mutations may promote resistance to conventional chemotherapy and 5-azacitidine in sAML cell lines. Furthermore we were able to demonstrate, that the combination of MEK inhibitors (Binimetinib and Trametinib) and 5-azacitidine as well as the induction of necroptosis such as the combination birinapant and emricasan, may provide a potential strategy to overcome the resistance. Disclosures Haferlach: MLL Munich Leukemia Laboratory: Employment, Equity Ownership.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Malwina Lisek ◽  
Joanna Stragierowicz ◽  
Feng Guo ◽  
Philipp P. Prosseda ◽  
Magdalena Wiktorska ◽  
...  

Hexachloronaphthalene (PCN67) is one of the most toxic among polychlorinated naphthalenes. Despite the known high bioaccumulation and persistence of PCN67 in the environment, it is still unclear to what extent exposure to these substances may interfere with normal neuronal physiology and lead to neurotoxicity. Therefore, the primary goal of this study was to assess the effect of PCN67 in neuronal in vitro models. Neuronal death was assessed upon PCN67 treatment using differentiated PC12 cells and primary hippocampal neurons. At 72 h postexposure, cell viability assays showed an IC50 value of 0.35 μg/ml and dose-dependent damage of neurites and concomitant downregulation of neurofilaments L and M. Moreover, we found that younger primary neurons (DIV4) were much more sensitive to PCN67 toxicity than mature cultures (DIV14). Our comprehensive analysis indicated that the application of PCN67 at the IC50 concentration caused necrosis, which was reflected by an increase in LDH release, HMGB1 protein export to the cytosol, nuclear swelling, and loss of homeostatic control of energy balance. The blockage of mitochondrial calcium uniporter partially rescued the cell viability, loss of mitochondrial membrane potential (ΔΨm), and the overproduction of reactive oxygen species, suggesting that the underlying mechanism of neurotoxicity involved mitochondrial calcium accumulation. Increased lipid peroxidation as a consequence of oxidative stress was additionally seen for 0.1 μg/ml of PCN67, while this concentration did not affect ΔΨm and plasma membrane permeability. Our results show for the first time that neuronal mitochondria act as a target for PCN67 and indicate that exposure to this drug may result in neuron loss via mitochondrial-dependent mechanisms.


Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1136 ◽  
Author(s):  
Masahiro Shinada ◽  
Daiki Kato ◽  
Satoshi Kamoto ◽  
Sho Yoshimoto ◽  
Masaya Tsuboi ◽  
...  

Podoplanin (PDPN), a small transmembrane mucin-like glycoprotein, is ectopically expressed. It is also known to be linked with several aspects of tumor malignancy in some types of human tumors, including invasion, metastasis, and cancer stemness. However, there are few reports on the expression of dog PDPN (dPDPN) in canine tumors, and the association between dPDPN and tumor malignancy has not been elucidated. We identified that 11 out of 18 types of canine tumors expressed dPDPN. Furthermore, 80% of canine malignant melanoma (MM), squamous cell carcinoma, and meningioma expressed dPDPN. Moreover, the expression density of dPDPN was positively associated with the expression of the Ki67 proliferation marker. The silencing of dPDPN by siRNAs resulted in the suppression of cell migration, invasion, stem cell-like characteristics, and cell viability in canine MM cell lines. The suppression of cell viability was caused by the induction of apoptosis and G2/M phase cell cycle arrest. Overall, this study demonstrates that dPDPN is expressed in various types of canine tumors and that dPDPN silencing suppresses cell viability through apoptosis and cell cycle arrest, thus providing a novel biological role for PDPN in tumor progression.


2019 ◽  
Vol 20 (6) ◽  
pp. 1508 ◽  
Author(s):  
Chang Lee ◽  
Jongsung Lee ◽  
Myeong Nam ◽  
Youn Choi ◽  
See-Hyoung Park

Tomentosin is a natural sesquiterpene lactone extracted from various plants and is widely used as a medicine because it exhibits essential therapeutic properties. In this study, we investigated the anti-carcinogenic effects of tomentosin in human osteosarcoma MG-63 cells by performing cell migration/viability/proliferation, apoptosis, and reactive oxygen species (ROS) analysis assays. MG-63 cells were treated with various doses of tomentosin. After treatment with tomentosin, MG-63 cells were analyzed using the MTT assay, colony formation assay, cell counting assay, wound healing assay, Boyden chamber assay, zymography assay, cell cycle analysis, FITC Annexin V apoptosis assay, terminal deoxynucleotidyl transferase dUTP nick end labeling assay, western blot analysis, and ROS detection analysis. Our results indicated that tomentosin decreased cell viability and migration ability in MG-63 cells. Moreover, tomentosin induced apoptosis, cell cycle arrest, DNA damage, and ROS production in MG-63 cells. Furthermore, tomentosin-induced intracellular ROS decreased cell viability and induced apoptosis, cell cycle arrest, and DNA damage in MG-63 cells. Taken together, our results suggested that tomentosin exerted anti-carcinogenic effects in MG-63 cells by induction of intracellular ROS.


2015 ◽  
Vol 406 (1-2) ◽  
pp. 245-253 ◽  
Author(s):  
Poorigali Raghavendra-Rao Sowmya ◽  
Bangalore Prabhashankar Arathi ◽  
Kariyappa Vijay ◽  
Vallikannan Baskaran ◽  
Rangaswamy Lakshminarayana

Sign in / Sign up

Export Citation Format

Share Document