scholarly journals CAFs Interacting With TAMs in Tumor Microenvironment to Enhance Tumorigenesis and Immune Evasion

2021 ◽  
Vol 11 ◽  
Author(s):  
Gurcan Gunaydin

Cancer associated fibroblasts (CAFs) and tumor associated macrophages (TAMs) are among the most important and abundant players of the tumor microenvironment. CAFs as well as TAMs are known to play pivotal supportive roles in tumor growth and progression. The number of CAF or TAM cells is mostly correlated with poor prognosis. Both CAFs and TAMs are in a reciprocal communication with the tumor cells in the tumor milieu. In addition to such interactions, CAFs and TAMs are also involved in a dynamic and reciprocal interrelationship with each other. Both CAFs and TAMs are capable of altering each other’s functions. Here, the current understanding of the distinct mechanisms about the complex interplay between CAFs and TAMs are summarized. In addition, the consequences of such a mutual relationship especially for tumor progression and tumor immune evasion are highlighted, focusing on the synergistic pleiotropic effects. CAFs and TAMs are crucial components of the tumor microenvironment; thus, they may prove to be potential therapeutic targets. A better understanding of the tri-directional interactions of CAFs, TAMs and cancer cells in terms of tumor progression will pave the way for the identification of novel theranostic cues in order to better target the crucial mechanisms of carcinogenesis.

Cancers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2969 ◽  
Author(s):  
Marc Hilmi ◽  
Rémy Nicolle ◽  
Corinne Bousquet ◽  
Cindy Neuzillet

Cancer-associated fibroblasts (CAFs) are prominent cells within the tumor microenvironment, by communicating with other cells within the tumor and by secreting the extracellular matrix components. The discovery of the immunogenic role of CAFs has made their study particularly attractive due to the potential applications in the field of cancer immunotherapy. Indeed, CAFs are highly involved in tumor immune evasion by physically impeding the immune system and interacting with both myeloid and lymphoid cells. However, CAFs do not represent a single cell entity but are divided into several subtypes with different functions that may be antagonistic. Considering that CAFs are orchestrators of the tumor microenvironment and modulate immune cells, targeting their functions may be a promising strategy. In this review, we provide an overview of (i) the mechanisms involved in immune regulation by CAFs and (ii) the therapeutic applications of CAFs modulation to improve the antitumor immune response and the efficacy of immunotherapy.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Alessandro Arcucci ◽  
Maria Rosaria Ruocco ◽  
Giuseppina Granato ◽  
Anna Maria Sacco ◽  
Stefania Montagnani

Redox balance is associated with the regulation of several cell signalling pathways and functions. In fact, under physiological conditions, cells maintain a balance between oxidant and antioxidant systems, and reactive oxygen species (ROS) can act as second messengers to regulate cell proliferation, cell death, and other physiological processes. Cancer tissues usually contain higher levels of ROS than normal tissues, and this ROS overproduction is associated with tumor development. Neoplastic tissues are very heterogeneous systems, composed of tumor cells and microenvironment that has a critical role in tumor progression. Cancer associated fibroblasts (CAFs) represent the main cell type of tumor microenvironment, and they contribute to tumor growth by undergoing an irreversible activation process. It is known that ROS can be transferred from cancer cells to fibroblasts. In particular, ROS affect the behaviour of CAFs by promoting the conversion of fibroblasts to myofibroblasts that support tumor progression and dissemination. Furthermore, the wrecking of redox homeostasis in cancer cells and tumor microenvironment induces a metabolic reprogramming in tumor cells and cancer associated fibroblasts, giving advantage to cancer growth. This review describes the role of ROS in tumor growth, by focusing on CAFs activation and metabolic interactions between cancer cells and stromal fibroblasts.


2021 ◽  
Vol 9 (1) ◽  
pp. e001341
Author(s):  
Chunxiao Li ◽  
Xiaofei Xu ◽  
Shuhua Wei ◽  
Ping Jiang ◽  
Lixiang Xue ◽  
...  

Macrophages are the most important phagocytes in vivo. However, the tumor microenvironment can affect the function and polarization of macrophages and form tumor-associated macrophages (TAMs). Usually, the abundance of TAMs in tumors is closely associated with poor prognosis. Preclinical studies have identified important pathways regulating the infiltration and polarization of TAMs during tumor progression. Furthermore, potential therapeutic strategies targeting TAMs in tumors have been studied, including inhibition of macrophage recruitment to tumors, functional repolarization of TAMs toward an antitumor phenotype, and other therapeutic strategies that elicit macrophage-mediated extracellular phagocytosis and intracellular destruction of cancer cells. Therefore, with the increasing impact of tumor immunotherapy, new antitumor strategies to target TAMs are now being discussed.


2021 ◽  
Vol 20 ◽  
pp. 153303382110363
Author(s):  
Yue Li ◽  
Long Zhao ◽  
Xiao-Feng Li

Hypoxia is an important feature of the tumor microenvironment, and is closely associated with cell proliferation, angiogenesis, metabolism and the tumor immune response. All these factors can further promote tumor progression, increase tumor aggressiveness, enhance tumor metastatic potential and lead to poor prognosis. In this review, these effects of hypoxia on tumor biology will be discussed, along with their significance for tumor detection and treatment.


Author(s):  
Atsuhito Uneda ◽  
Kazuhiko Kurozumi ◽  
Atsushi Fujimura ◽  
Kentaro Fujii ◽  
Joji Ishida ◽  
...  

AbstractGlioblastoma (GBM) is the most lethal primary brain tumor characterized by significant cellular heterogeneity, namely tumor cells, including GBM stem-like cells (GSCs) and differentiated GBM cells (DGCs), and non-tumor cells such as endothelial cells, vascular pericytes, macrophages, and other types of immune cells. GSCs are essential to drive tumor progression, whereas the biological roles of DGCs are largely unknown. In this study, we focused on the roles of DGCs in the tumor microenvironment. To this end, we extracted DGC-specific signature genes from transcriptomic profiles of matched pairs of in vitro GSC and DGC models. By evaluating the DGC signature using single cell data, we confirmed the presence of cell subpopulations emulated by in vitro culture models within a primary tumor. The DGC signature was correlated with the mesenchymal subtype and a poor prognosis in large GBM cohorts such as The Cancer Genome Atlas and Ivy Glioblastoma Atlas Project. In silico signaling pathway analysis suggested a role of DGCs in macrophage infiltration. Consistent with in silico findings, in vitro DGC models promoted macrophage migration. In vivo, coimplantation of DGCs and GSCs reduced the survival of tumor xenograft-bearing mice and increased macrophage infiltration into tumor tissue compared with transplantation of GSCs alone. DGCs exhibited a significant increase in YAP/TAZ/TEAD activity compared with GSCs. CCN1, a transcriptional target of YAP/TAZ, was selected from the DGC signature as a candidate secreted protein involved in macrophage recruitment. In fact, CCN1 was secreted abundantly from DGCs, but not GSCs. DGCs promoted macrophage migration in vitro and macrophage infiltration into tumor tissue in vivo through secretion of CCN1. Collectively, these results demonstrate that DGCs contribute to GSC-dependent tumor progression by shaping a mesenchymal microenvironment via CCN1-mediated macrophage infiltration. This study provides new insight into the complex GBM microenvironment consisting of heterogeneous cells.


Cells ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2257
Author(s):  
Mark Dapash ◽  
David Hou ◽  
Brandyn Castro ◽  
Catalina Lee-Chang ◽  
Maciej S. Lesniak

GBM is the most common primary brain tumor in adults, and the aggressive nature of this tumor contributes to its extremely poor prognosis. Over the years, the heterogeneous and adaptive nature of GBM has been highlighted as a major contributor to the poor efficacy of many treatments including various immunotherapies. The major challenge lies in understanding and manipulating the complex interplay among the different components within the tumor microenvironment (TME). This interplay varies not only by the type of cells interacting but also by their spatial distribution with the TME. This review highlights the various immune and non-immune components of the tumor microenvironment and their consequences f the efficacy of immunotherapies. Understanding the independent and interdependent aspects of the various sub-populations encapsulated by the immune and non-immune components will allow for more targeted therapies. Meanwhile, understanding how the TME creates and responds to different environmental pressures such as hypoxia may allow for other multimodal approaches in the treatment of GBM. Ultimately, a better understanding of the GBM TME will aid in the development and advancement of more effective treatments and in improving patient outcomes.


2020 ◽  
Vol 8 (1) ◽  
pp. e000489 ◽  
Author(s):  
Marta Di Martile ◽  
Valentina Farini ◽  
Francesca Maria Consonni ◽  
Daniela Trisciuoglio ◽  
Marianna Desideri ◽  
...  

BackgroundA bidirectional crosstalk between tumor cells and the surrounding microenvironment contributes to tumor progression and response to therapy. Our previous studies have demonstrated that bcl-2 affects melanoma progression and regulates the tumor microenvironment. The aim of this study was to evaluate whether bcl-2 expression in melanoma cells could influence tumor-promoting functions of tumor-associated macrophages, a major constituent of the tumor microenvironment that affects anticancer immunity favoring tumor progression.MethodsTHP-1 monocytic cells, monocyte-derived macrophages and melanoma cells expressing different levels of bcl-2 protein were used. ELISA, qRT-PCR and Western blot analyses were used to evaluate macrophage polarization markers and protein expression levels. Chromatin immunoprecipitation assay was performed to evaluate transcription factor recruitment at specific promoters. Boyden chamber was used for migration experiments. Cytofluorimetric and immunohistochemical analyses were carried out to evaluate infiltrating macrophages and T cells in melanoma specimens from patients or mice.ResultsHigher production of tumor-promoting and chemotactic factors, and M2-polarized activation was observed when macrophages were exposed to culture media from melanoma cells overexpressing bcl-2, while bcl-2 silencing in melanoma cells inhibited the M2 macrophage polarization. In agreement, the number of melanoma-infiltrating macrophages in vivo was increased, in parallel with a greater expression of bcl-2 in tumor cells. Tumor-derived interleukin-1β has been identified as the effector cytokine of bcl-2-dependent macrophage reprogramming, according to reduced tumor growth, decreased number of M2-polarized tumor-associated macrophages and increased number of infiltrating CD4+IFNγ+and CD8+IFNγ+effector T lymphocytes, which we observed in response to in vivo treatment with the IL-1 receptor antagonist kineret. Finally, in tumor specimens from patients with melanoma, high bcl-2 expression correlated with increased infiltration of M2-polarized CD163+macrophages, hence supporting the clinical relevance of the crosstalk between tumor cells and microenvironment.ConclusionsTaken together, our results show that melanoma-specific bcl-2 controls an IL-1β-driven axis of macrophage diversion that establishes tumor microenvironmental conditions favoring melanoma development. Interfering with this pathway might provide novel therapeutic strategies.


Nanoscale ◽  
2021 ◽  
Author(s):  
chenglei li ◽  
Zhaohuan Li ◽  
Xue Gong ◽  
Jianhao Liu ◽  
Tingyue Zheng ◽  
...  

Cancer-associated fibroblasts (CAFs) play a crucial role in facilitating tumor invasion and metastasis, which act as the “soils” in tumor microenvironment (TME). Accordingly, it would be a promising strategy to...


2020 ◽  
Author(s):  
Dongwei Dou ◽  
Xiaoyang Ren ◽  
Mingli Han ◽  
Xiaodong Xu ◽  
Xin Ge ◽  
...  

Abstract Background Cancer associated fibroblasts (CAF) are important component in tumor microenvironment and has been reported contributes to tumor progression through many mechanisms, however, the detailed mechanism underling immune-suppression effect are not clearly defined. Methods In this study, human breast cancer-derived cancer associated fibroblasts was cultured, and CAF-derived exosomes in culture medium was isolated. Cancer cell migration was evaluated by transwell and wound healing assay, miR-92 binding to the LATS2 3’ untranslated region was validated by luciferase report assay, and underlying mechanism was investigated by chromatin immunoprecipitation and Immunoprecipitation. Results After treatment by CAF-derived exosomes, breast cancer cells express higher PD-L1, accompanied with increased miR-92 expression. Increased PD-L1 expression which induced by CAF- derived exosomes significantly promotes apoptosis and impaired proliferation of T cell. proliferation and migration of breast cancer cells was increased after transfection of miR-92, LATS2 was recognized as target gene of miR-92, which was proved by luciferase assay. Immunoprecipitation (IP) shown that LATS2 can interact with YAP1, after nuclear translocation, YAP1 could binds to enhancer region of PD-L1 to promotes transcription activity, which was confirmed by chromatin immunoprecipitation (ChIP). Furthermore, animal study confirmed that cancer associated fibroblasts significantly promotes tumor progression and impaired function of tumor infiltrated immune cells in vivo. Conclusion Our data revealed a novel mechanism which can induce immune suppression in tumor microenvironment.


Author(s):  
Kenta Terai ◽  
Yoshinobu Konishi ◽  
Hiroshi Ichise ◽  
Tetsuya Watabe ◽  
Yukari Sando ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document