scholarly journals Pseudomonas aeruginosa PcrV Enhances the Nitric Oxide-Mediated Tumoricidal Activity of Tumor-Associated Macrophages via a TLR4/PI3K/AKT/mTOR-Glycolysis-Nitric Oxide Circuit

2021 ◽  
Vol 11 ◽  
Author(s):  
Hua Yu ◽  
Ying Bai ◽  
Jing Qiu ◽  
Xiaomei He ◽  
Junzhi Xiong ◽  
...  

Tumor-associated macrophages (TAMs), which display a tumor-supportive M2 phenotype, are closely related to tumor growth and metastasis. The reprogramming of TAMs toward a tumoricidal M1 profile has emerged as an attractive strategy for cancer immunotherapy. In this study, we found that the intratumoral injection of PcrV protein, a component of the Pseudomonas aeruginosa type 3 secretion system, suppressed tumor growth and increased apoptosis, inducible nitric oxide synthase (iNOS) expression, and the percentage of M1-polarized TAMs in tumor tissues. Furthermore, the intratumoral injection of PcrV-primed macrophages exerted a similar tumoricidal effect. In vitro analyses revealed that PcrV reeducated TAMs toward an antitumoral M1 phenotype and augmented their nitric oxide (NO)-mediated cytotoxicity against cancer cells. Mechanistically, we found that these effects were dependent on the activation of Toll-like receptor 4 (TLR4)/myeloid differentiation factor 88 (MyD88)-mediated regulation of a PI3K/AKT/mTOR-glycolysis-NO feedback loop via direct interaction with TLR4. Collectively, these results revealed a potential role for PcrV in cancer immunotherapy through the targeting of TAM plasticity.

2019 ◽  
Vol 75 (1) ◽  
pp. 117-125 ◽  
Author(s):  
Odel Soren ◽  
Ardeshir Rineh ◽  
Diogo G Silva ◽  
Yuming Cai ◽  
Robert P Howlin ◽  
...  

Abstract Objectives The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (‘DiEthylAmin-Cephalosporin-3′-Diazeniumdiolate’) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. Methods β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. Results DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. Conclusions DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
Neeru M Sharma ◽  
Kenichi Katsurada ◽  
Xuefei Liu ◽  
Kaushik P Patel

The exaggerated sympathetic drive is a characteristic of heart failure (HF) due to reduced neuronal nitric oxide synthase (nNOS) within the paraventricular nucleus (PVN). Previously we have shown that there were increased accumulation of nNOS-ubiquitin (nNOS-Ub) conjugates in the PVN of rats with HF (1.0±0.05 Sham vs. 1.29±0.06 HF) due to the increased levels of PIN (a protein inhibitor of nNOS, known to dissociate nNOS dimers into monomers) (0.76±0.10 Sham vs. 1.12±0.09 HF) and decreased levels of tetrahydrobiopterin (BH4): a cofactor required for stabilization of nNOS dimers (0.62±0.02 Sham vs. 0.44±0.03 HF). We also showed that there is blunted nitric oxide-mediated inhibition of sympathetic tone via the PVN in HF. Here we examined whether CHIP(C-terminus of Hsp70 -interacting protein), a chaperone-dependent E3 ubiquitin-protein isopeptide ligase known to ubiquitylate Hsp90-chaperoned proteins could act as an ubiquitin ligase for nNOS in the PVN. Immunofluorescence studies revealed colocalization of nNOS and CHIP in the PVN indicating their possible interaction. CHIP expression was increased by 50% in the PVN of rats with HF(0.96±0.08 Sham vs.1.44±0.10* HF). It is shown that Hsp90 protects nNOS from ubiquitination while Hsp70 promotes the ubiquitination and degradation. We observed significant upregulation of Hsp70 (0.49±0.03 Sham vs. 0.65±0.02* HF) with a trend toward the decrease in Hsp90 expression (0.90±0.07 Sham vs. 0.71±0.06 HF). The opposing effects of the two chaperones could account for the increased CHIP-mediated ubiquitination and degradation of dysfunctional nNOS monomers in the PVN of rats with HF. Furthermore, neuronal NG108-15 cell line transfected with the pCMV3-CHIP-GFP spark (CHIP overexpression plasmid) showed approximately 74% increase in CHIP with concomitant 49% decrease in nNOS expression. In vitro ubiquitination assay in NG108 cells transfected with pCMV-(HA-Ub) 8 and pCMV3-CHIP-GFP spark plasmid reveal increased HA-Ub-nNOS conjugates (1.13 ± 0.09 Scramble vs. 1.65 ± 0.12* CHIP plasmid). Taken together, our results identify CHIP as an E3 ligase for ubiquitination of dysfunctional nNOS and CHIP expression is augmented during HF leading to increased proteasomal degradation of nNOS in the PVN.


2021 ◽  
Vol 12 ◽  
Author(s):  
Anne-Gaëlle Leroy ◽  
Jocelyne Caillon ◽  
Nathalie Caroff ◽  
Alexis Broquet ◽  
Stéphane Corvec ◽  
...  

Azithromycin (AZM) is a 15-membered-ring macrolide that presents a broad-spectrum antimicrobial activity against Gram-positive bacteria and atypical microorganisms but suffers from a poor diffusion across the outer-membrane of Gram-negative bacilli, including Pseudomonas aeruginosa (PA). However, AZM has demonstrated clinical benefits in patients suffering from chronic PA respiratory infections, especially cystic fibrosis patients. Since the rise of multidrug-resistant PA has led to a growing need for new therapeutic options, this macrolide has been proposed as an adjunctive therapy. Clinical trials assessing AZM in PA acute pneumonia are scarce. However, a careful examination of the available literature provides good rationales for its use in that context. In fact, 14- and 15-membered-ring macrolides have demonstrated immunomodulatory and immunosuppressive effects that could be of major interest in the management of acute illness. Furthermore, growing evidence supports a downregulation of PA virulence dependent on direct interaction with the ribosomes, and based on the modulation of several key regulators from the Quorum Sensing network. First highlighted in vitro, these interesting properties of AZM have subsequently been confirmed in the animal models. In this review, we systematically analyzed the literature regarding AZM immunomodulatory and anti-PA effects. In vitro and in vivo studies, as well as clinical trials were reviewed, looking for rationales for AZM use in PA acute pneumonia.


2018 ◽  
Vol 1859 (5) ◽  
pp. 333-341 ◽  
Author(s):  
Raika Yamagiwa ◽  
Takuya Kurahashi ◽  
Mariko Takeda ◽  
Mayuho Adachi ◽  
Hiro Nakamura ◽  
...  

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Hui Yuan ◽  
Zelong Lin ◽  
Yingjun Liu ◽  
Yuchuan Jiang ◽  
Ke Liu ◽  
...  

Abstract Background M2-polarized tumor-associated macrophages (M2-TAMs) have been shown to correlate with the progression of various cancers, including intrahepatic cholangiocarcinoma (ICC). However, the interactions and mechanism between M2 macrophages and ICC are not completely clear. We aimed to clarify whether M2 macrophages promote the malignancy of ICC and its mechanism. Methods Two progressive murine models of ICC were used to evaluate the alterations in different macrophage populations and phenotypes. Furthermore, we assessed M2 macrophage infiltration in 48 human ICC and 15 normal liver samples. The protumor functions and the underlying molecular mechanisms of M2 macrophages in ICC were investigated in an in vitro coculture system. Results We found that the number of M2 macrophages was significantly higher in ICC tissues than in normal bile ducts in the two murine models. M2 macrophage infiltration was highly increased in peritumoral compared with intratumoral regions and normal liver (p < 0.01). ICC cells induced macrophages to differentiate into the M2-TAM phenotype, and coculture with these M2 macrophages promoted ICC cell proliferation, invasion and epithelial–mesenchymal transition (EMT) in vitro. Mechanistically, M2-TAM-derived IL-10 promoted the malignant properties of ICC cells through STAT3 signaling. Furthermore, blockade of IL-10/STAT3 signaling partly rescued the effects of M2 macrophages on ICC. Conclusion Our results indicated that M2-polarized macrophages induced by ICC promote tumor growth and invasiveness through IL-10/STAT3-induced EMT and might be a potential therapeutic target for ICC.


2021 ◽  
Vol 9 (9) ◽  
pp. e002688
Author(s):  
Christina S E Carroll ◽  
Erin R Andrew ◽  
Laeeq Malik ◽  
Kathryn F Elliott ◽  
Moira Brennan ◽  
...  

BackgroundWe describe intratumoral injection of a slow-release emulsion of killed mycobacteria (complete Freund’s adjuvant (CFA)) in three preclinical species and in human cancer patients.MethodsEfficacy and safety were tested in mammary tumors in mice, in mastocytomas in mice and dogs, and in equine melanomas. In mice, survival, tumor growth, and tumor infiltration by six immune cell subsets (by flow cytometry) were investigated and analyzed using Cox proportional hazards, a random slopes model, and a full factorial model, respectively. Tumor growth and histology were investigated in dogs and horses, as well as survival and tumor immunohistochemistry in dogs. Tumor biopsies were taken from human cancer patients on day 5 (all patients) and day 28 (some patients) of treatment and analyzed by histology. CT scans are provided from one patient.ResultsSignificantly extended survival was observed in mouse P815 and 4T1 tumor models. Complete tumor regressions were observed in all three non-human species (6/186 (3%) of mouse mastocytomas; 3/14 (21%) of canine mastocytomas and 2/11 (18%) of equine melanomas). Evidence of systemic immune responses (regression of non-injected metastases) was also observed. Analysis of immune cells infiltrating mastocytoma tumors in mice showed that early neutrophil infiltration was predictive of treatment benefit. Analysis of the site of mastocytoma regression in dogs weeks or months after treatment demonstrated increased B and T cell infiltrates. Thus, activation of the innate immune system alone may be sufficient for regression of some injected tumors, followed by activation of the acquired immune system which can mediate regression of non-injected metastases. Finally, we report on the use of CFA in 12 human cancer patients. Treatment was well tolerated. CT scans showing tumor regression in a patient with late-stage renal cancer are provided.ConclusionOur data demonstrate that intratumoral injection of CFA has major antitumor effects in a proportion of treated animals and is safe for use in human cancer patients. Further trials in human cancer patients are therefore warranted. Our novel treatment provides a simple and inexpensive cancer immunotherapy, immediately applicable to a wide range of solid tumors, and is suitable to patients in developing countries and advanced care settings.


2021 ◽  
Author(s):  
Omar Samir ◽  
Naohiro Kobayashi ◽  
Mennatullah Siyam ◽  
Manoj Yadav ◽  
Yuri Inoue ◽  
...  

Abstract MAFB is a transcription factor specifically expressed in macrophages. Tumor associated macrophages (TAMs) play a key role in the tumor microenvironment (TME) by inducing immunosuppression, angiogenesis, tumor invasion, and metastasis. However, finding a suitable specific biomarker and target for TAMs is challenging. Our previous study1 suggested that MAFB could be a suitable marker for tumor-associated macrophages (TAMs) besides MAFB is expressed in anti-inflammatory alternatively activated M2 macrophages in vitro. In the current study, in a cohort of patients with lung adenocarcinoma (n = 120), increased MAFB expression was related to increased metastasis and poor overall survival rate. Our findings indicate that MAFB can be used as a prognostic marker for assessing metastatic potential in patients with lung adenocarcinoma. Further, we showed that MAFB expression was positively correlated with the expression of CD204 and CD68 in hepatocarcinoma, colon and pancreatic cancers. We demonstrated that MAFB could be used as a biomarker for TAMs and consequently, for assessing severity in various human cancers, including lung, liver, colon, and pancreatic cancers, according to the immunohistochemical analysis of the expression of MAFB, CD68, and CD204. In addition, we showed that MAFB was expressed in TAMs expressing Programmed cell death protein-1 and/or Programmed cell death ligand 1 (TAM PD-1+ and TAM PD-L1+) cells in lung adenocarcinoma and Lewis lung carcinoma (LLC) mouse model. These findings indicate that MAFB can be a potential target for drug development against TAM PD-1+ and TAM PD-L1+ cells. In summary, transcriptional factor MAFB can be used as a specific biomarker, prognostic marker, and a potential target for cancer immunotherapy against TAMs.


2021 ◽  
Author(s):  
Samir Omar ◽  
Naohiro Kobayashi ◽  
Mennatullah Siyam ◽  
Manoj Yadav ◽  
Yuri Inoue ◽  
...  

Abstract MAFB is a transcription factor specifically expressed in macrophages. Using in vitro and in vivo in mouse tumor models, our previous study suggested that MAFB could be a suitable marker for tumor-associated macrophages (TAMs), besides MAFB is expressed in anti-inflammatory alternatively activated M2 macrophages in vitro. TAMs play a key role in the tumor microenvironment (TME) by inducing immunosuppression, angiogenesis, tumor invasion, and metastasis. However, finding a suitable specific biomarker and target for TAMs is challenging. Here, we demonstrated that MAFB could be used as a biomarker for TAMs and consequently, for severity in various human cancers, including lung, liver, colon, and pancreatic cancers, according to the immunohistochemical analysis of the expression of MAFB, CD68, and CD204. Moreover, In a cohort of lung adenocarcinomas patients (n = 120), increased MAFB expression was related to increased tendency towards metastasis and poor overall survival rate. Further, we showed that MAFB expression was positively correlated to the expression of CD204 and CD68 in both human hepatocarcinoma and colon cancers. Our findings indicate that MAFB as a specific biomarker can be used as prognostic marker for Metastasis potential in Lung adenocarcinomas patients and also a biomarker for the severe Liver, Colon and pancreatic cancers. In addition, we showed that MAFB was expressed in Tumor associated macrophages expressing Programmed cell death protein-1 and/or Programmed cell death ligand 1 (TAM PD-1+ and TAM PD-L1+) cells in both human lung adenocarcinomas and Lewis lung carcinoma (LLC) mouse model. These findings indicate that MAFB can be a potential target for drug development against TAM PD-1+ and TAM PD-L1+ cells. In summary, transcriptional factor MAFB can be used as a specific biomarker, prognostic marker and a potential target for cancer immunotherapy against TAMs.


2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Fumi Sato-Kaneko ◽  
Xiaodong Wang ◽  
Shiyin Yao ◽  
Tadashi Hosoya ◽  
Fitzgerald S. Lao ◽  
...  

For an activating immunotherapy such as adjuvants, a compound that can prolong immune stimulation may enhance efficacy. We leveraged data from two prior high throughput screens with NF-κB and interferon reporter cell lines to identify 4H-chromene-3-carbonitriles as a class of compounds that prolonged activation in both screens. We repurchased 23 of the most promising candidates. Out of these compounds we found #1 to be the most effective agent in stimulating the release of cytokines and chemokines from immune cells, including murine primary bone marrow derived dendritic cells. Mechanistically, #1 inhibited tubulin polymerization, and its effect on immune cell activation was abolished in cells mutated in the beta-tubulin gene (TUBB) encoding the site where colchicine binds. Treatment with #1 resulted in mitochondrial depolarization followed by mitogen-activated protein kinase activation. Because tubulin polymerization modulating agents have been used for chemotherapy to treat malignancy and #1 activated cytokine responses, we hypothesized that #1 could be effective for cancer immunotherapy. Intratumoral injection of #1 delayed tumor growth in a murine syngeneic model of head and neck cancer. When combined with PD-1 blockade, tumor growth slowed in the injected tumor nodule and there was an abscopal effect in an uninjected nodule on the contralateral flank, suggesting central antitumor immune activation. Thus, we identified a new class of tubulin depolymerizing agent that acts as both an innate and an adaptive immune activating agent and that limits solid tumor growth when used concurrently with a checkpoint inhibitor.


Sign in / Sign up

Export Citation Format

Share Document