scholarly journals Revealing the Role of lncRNA CCDC144NL-AS1 and LINC01614 in Gastric Cancer via Integrative Bioinformatics Analysis and Experimental Validation

2022 ◽  
Vol 11 ◽  
Author(s):  
Weiwei Sheng ◽  
Weihong Zhou ◽  
Yundi Cao ◽  
Yuejiao Zhong

Long non-coding RNAs (lncRNAs) are key regulators in the pathophysiology of gastric cancer, and lncRNAs have been regarded as potential biomarkers and therapeutic targets for gastric cancer. The present study performed the WGCNA analysis of the GSE70880 dataset and aimed to identify novel lncRNAs associated with gastric cancer progression. Based on the WGCNA, the lncRNAs and mRNA co-expression network were constructed. A total of four modules were identified and the eigengenes in different modules were involved in various key signaling pathways. Furthermore, the co-expression networks were constructed between the lncRNAs and mRNA; this leads to the identification of 6 modules, which participated in various cellular pathways. The survival analysis showed that high expression of CCDC144NL antisense RNA 1 (CCDC144NL-AS1) and LINC01614 was positively correlated with the poor prognosis of patients with gastric cancer. The in vitro validation results showed that CCDC144NL-AS1 and LINC01614 were both up-regulated in the gastric cancer cells. Silence of CCDC144NL-AS1 and LINC01614 both significantly suppressed the cell proliferation and migration of gastric cancer cells, and also promoted the chemosensitivity of gastric cancer cells to 5-fluorouracil. Collectively, our results suggested that the newly identified two lncRNAs (CCDC144NL-AS1 and LINC01614) may act as oncogenes in gastric cancer.

Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1088 ◽  
Author(s):  
I-Han Wang ◽  
Tzu-Ting Huang ◽  
Ji-Lin Chen ◽  
Li-Wei Chu ◽  
Yueh-Hsin Ping ◽  
...  

The 3-hydroxy-3-methylglutaryl-CoA synthase 1 (HMGCS1) is a potential regulatory node in the mevalonate pathway that is frequently dysregulated in tumors. This study found that HMGCS1 expression is upregulated in stomach adenocarcinoma samples of patients and tumorspheres of gastric cancer cells. HMGCS1 elevates the expression levels of the pluripotency genes Oct4 and SOX-2 and contributes to tumorsphere formation ability in gastric cancer cells. HMGCS1 also promotes in vitro cell growth and progression and the in vivo tumor growth and lung metastasis of gastric cancer cells. After blocking the mevalonate pathway by statin and dipyridamole, HMGCS1 exerts nonmetabolic functions in enhancing gastric cancer progression. Furthermore, the level and nuclear translocation of HMGCS1 in gastric cancer cells are induced by serum deprivation. HMGCS1 binds to and activates Oct4 and SOX-2 promoters. HMGCS1 also enhances the integrated stress response (ISR) and interacts with the endoplasmic reticulum (ER) stress transducer protein kinase RNA-like endoplasmic reticulum kinase (PERK). Our results reveal that HMGCS1 contributes to gastric cancer progression in both metabolic and nonmetabolic manners.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Shihua Wu ◽  
Feng Liu ◽  
Liming Xie ◽  
Yaling Peng ◽  
Xiaoyuan Lv ◽  
...  

Understanding the molecular mechanisms underlying gastric cancer progression contributes to the development of novel targeted therapies. In this study, we found that the expression levels of miR-125b were strongly downregulated in gastric cancer and associated with clinical stage and the presence of lymph node metastases. Additionally, miR-125b could independently predict OS and DFS in gastric cancer. We further found that upregulation of miR-125b inhibited the proliferation and metastasis of gastric cancer cells in vitro and in vivo. miR-125b elicits these responses by directly targeting MCL1 (myeloid cell leukemia 1), which results in a marked reduction in MCL1 expression. Transfection of miR-125b sensitizes gastric cancer cells to 5-FU-induced apoptosis. By understanding the function and molecular mechanisms of miR-125b in gastric cancer, we may learn that miR-125b has the therapeutic potential to suppress gastric cancer progression and increase drug sensitivity to gastric cancer.


2016 ◽  
Vol 0 (0) ◽  
Author(s):  
Min Yang ◽  
Nan Jiang ◽  
Qi-wei Cao ◽  
Qing Sun

Abstract Gastric cancer is the most common digestive malignant tumor worldwild. EDD1 was reported to be frequently amplified in several tumors and played an important role in the tumorigenesis process. However, the biological role and potential mechanism of EDD1 in gastric cancer remains poorly understood. In this study, we are aim to investigate the effect of EDD1 on gastric cancer progression and to explore the underlying mechanism. The results showed the significant up-regulation of EDD1 in -gastric cancer cell tissues and lines. The expression level of EDD1 was also positively associated with advanced clinical stages and predicted poor overall patient survival and poor disease-free patient survival. Besides, EDD1 knockdown markedly inhibited cell viability, colony formation, and suppressed tumor growth. Opposite results were obtained in gastric cancer cells with EDD1 overexpression. EDD1 knockdown was also found to induce gastric cancer cells apoptosis. Further investigation indicated that the oncogenic role of EDD1 in regulating gastric cancer cells growth and apoptosis was related to its PABC domain and directly through targeting miR-22, which was significantly down-regulated in gastric cancer tissues. Totally, our study suggests that EDD1 plays an oncogenic role in gastric cancer and may be a potential therapeutic target for gastric cancer.


2021 ◽  
Vol 10 ◽  
Author(s):  
Beibei Chen ◽  
Sai-Qi Wang ◽  
Jinxi Huang ◽  
Weifeng Xu ◽  
Huifang Lv ◽  
...  

Kremen2 (Krm2) plays an important role in embryonic development, bone formation, and tumorigenesis as a crucial regulator of classical Wnt/β-catenin signaling pathway. However, the role of Krm2 in gastric cancer is not clear. The aim of this study was to explore the regulatory role of Krm2 in the tumorigenesis and metastasis of gastric cancer. It was demonstrated that, compared to para-cancerous tissues, Krm2 was significantly up-regulated in gastric cancer tissues and was positively correlated with the pathological grade of gastric cancer patients. Given that Krm2 is abundantly expressed in most tested gastric cancer cell lines, Krm2 knockdown cell models were established and further used to construct mice xenograft model. After knocking down Krm2, both the cell survival in vitro and tumorigenesis in vivo of gastric cancer cells were inhibited. At the same time, knockdown of Krm2 induced apoptosis, cell cycle arrest at G2/M phase and repression of migration in gastric cancer cells in vitro. Mechanistically, we found that knockdown of Krm2 suppressed PI3K/Akt pathway. Therefore, we revealed the novel role and the molecular mechanism of Krm2 in promoting the tumorigenesis and metastasis in gastric cancer. Krm2 can be a potent candidate for designing of targeted therapy.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Feng Yang ◽  
Anpei Hu ◽  
Dan Li ◽  
Jianqun Wang ◽  
Yanhua Guo ◽  
...  

Abstract Background Circular RNAs (circRNAs), a subclass of non-coding RNAs, play essential roles in tumorigenesis and aggressiveness. Our previous study has identified that circAGO2 drives gastric cancer progression through activating human antigen R (HuR), a protein stabilizing AU-rich element-containing mRNAs. However, the functions and underlying mechanisms of circRNAs derived from HuR in gastric cancer progression remain elusive. Methods CircRNAs derived from HuR were detected by real-time quantitative RT-PCR and validated by Sanger sequencing. Biotin-labeled RNA pull-down, mass spectrometry, RNA immunoprecipitation, RNA electrophoretic mobility shift, and in vitro binding assays were applied to identify proteins interacting with circRNA. Gene expression regulation was observed by chromatin immunoprecipitation, dual-luciferase assay, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its protein partner on the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Results Circ-HuR (hsa_circ_0049027) was predominantly detected in the nucleus, and was down-regulated in gastric cancer tissues and cell lines. Ectopic expression of circ-HuR suppressed the growth, invasion, and metastasis of gastric cancer cells in vitro and in vivo. Mechanistically, circ-HuR interacted with CCHC-type zinc finger nucleic acid binding protein (CNBP), and subsequently restrained its binding to HuR promoter, resulting in down-regulation of HuR and repression of tumor progression. Conclusions Circ-HuR serves as a tumor suppressor to inhibit CNBP-facilitated HuR expression and gastric cancer progression, indicating a potential therapeutic target for gastric cancer.


2020 ◽  
Author(s):  
Feng Qu ◽  
Bin Zhu ◽  
Yi-Lin Hu ◽  
Qin-Sheng Mao ◽  
Ying Feng

Abstract Background: Gastric cancer (GC) is among the most common and deadliest cancers globally. While many long non-coding RNAs (lncRNAs) are key regulators of GC pathogenesis, the role of HOXA-AS3 in this oncogenic context remains to be defined. Methods: Levels of HOXA-AS3 expression in GC were quantified, after which the functional role of this lncRNA in vitro and in vivo was assessed via HOXA-AS3 knockdown. The localization of HOXA-AS3 within cells was also confirmed, and predicted microRNA (miRNA) targets of this lncRNA and its ability to modulate downstream NF-κB signaling in GC cells were evaluated.Results: GC cells and tissues exhibited significant HOXA-AS3 upregulation (P<0.05), and the levels of this lncRNA were found to be correlated with tumor size, lymph node status, invasion depth, and Helicobacter pylori infection status. Knocking down HOXA-AS3 disrupted GC cell migration, proliferation, and invasion in vitro and tumor metastasis in vivo. At a mechanistic level, we found that HOXA-AS3 was able to sequester miR-29a-3p, thereby regulating the expression of LTβR and modulating NF-κB signaling in GC. Conclusion: HOXA-AS3/miR-29a-3p/LTβR/NF-κB regulatory axis contributes to the progression of GC, thereby offering novel target for the prognosis and treatment of GC.


2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Qi Shi ◽  
Chuanwen Zhou ◽  
Rui Xie ◽  
Miaomiao Li ◽  
Peng Shen ◽  
...  

Abstract Background Circular RNAs (circRNAs) have been reported to play an important role in tumor progression in various cancer types, including gastric cancer. The aim of this study was to investigate the role of circCNIH4 (hsa_circ_0000190) in gastric cancer and the underlying mechanism. Methods The expression levels of circCNIH4 and Wnt antagonist genes were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The protein levels of β-catenin, Ki67, Dickkopf 2 (DKK2) and Frizzled related protein (FRZB) were measured by western blot. Ectopic overexpression or knockdown of circCNIH4, proliferation, apoptosis, migration and invasion by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT), flow cytometry and transwell assay in vitro, and in vivo experiment, were employed to assess the role of circCNIH4 in gastric cancer. Results CircCNIH4 was downregulated in gastric cancer tissues and cells. Overexpression of circCNIH4 inhibited gastric cancer cell proliferation, migration and invasion and promoted apoptosis by inactivating Wnt/β-catenin pathway in vitro. CircCNIH4 induced the expression of DKK2 and FRZB in gastric cancer cells. Moreover, silencing of DKK2 or FRZB reversed circCNIH4 overexpression-mediated effects on gastric cancer cells. Additionally, circCNIH4 suppressed tumor growth via regulating DKK2 and FRZB expression in gastric cancer in vivo. Conclusion Our study demonstrated that circCNIH4 played a tumor-inhibiting role through upregulating DKK2 and FRZB expression and suppressing Wnt/β-catenin pathway in gastric cancer, which might provide a potential biomarker for the diagnosis and treatment of gastric cancer.


2020 ◽  
Vol 38 (4_suppl) ◽  
pp. 410-410 ◽  
Author(s):  
Yu Jin Kim ◽  
Won Shik Kim ◽  
Sang Woo Kim ◽  
Woon Yong Jung

410 Background: In our previous study, we identified three miRNAs (hsa-miR-421, hsa-miR-29b-1-5p, and hsa-miR-27b-5p) with two mRNAs (FBXO11 and CREBZF) that might play an important role in the development of gastric adenocarcinoma (GAC) from premalignant adenomas. However, the expression and function of these miRNAs have not been not well characterized. Methods: We investigated the roles of CREBZF and miRNAs as potential biomarkers for the progression of gastric cancer (GC) in low-/high-grade dysplasia and early gastric cancer patients using immunohistochemical staining and miRNA in situ hybridization. Considering that targets can modulate in GC, we analyzed the CREBZF expression in gastric cancer cell lines by RT-PCR and western blot analysis. Results: We observed lower expression of CREBZF with increasing miRNAs in the MKN-74 gastric cancer cells compared to that in SNU-NCC-19. Next, the role of CREBZF in MKN-74 gastric cancer cells was investigated via cell viability and migration assays by miRNA/anti-miRNA modulation. Furthermore, we found that hsa-miR-421/hsa-miR-29b-1-5p target CREBZF and might play an important role in the migration of MKN-74 cells. Conclusions: This study suggests that increased CREBZF by hsa-miR-421/hsa-miR-29b-1-5p inhibition may be important to prevent the progression of gastric cancer in its early stage.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yixun Lu ◽  
Benlong Zhang ◽  
Baohua Wang ◽  
Di Wu ◽  
Chuang Wang ◽  
...  

Abstract Background Gastric cancer (GC) is the fifth most commonly diagnosed cancer worldwide. Due to the dismal prognosis, identifying novel therapeutic targets in GC is urgently needed. Evidences have shown that miRNAs played critical roles in the regulation of tumor initiation and progression. GLI family zinc finger 2 (GLI2) has been reported to be up-regulated and facilitate cancer progression in multiple malignancies. In this study, we focused on identifying GLI2-targeted miRNAs and clarifying the underlying mechanism in GC. Methods Paired fresh gastric cancer tissues were collected from gastrectomy patients. GLI2 and miRNAs expression were detected in gastric cancer tissues and cell lines. Bioinformatics analysis was used to predict GLI2-targeted miRNAs and dual-luciferase reporter assay was applied for target verification. CCK-8, clone formation, transwell and flow cytometry were carried out to determine the proliferation, migration, invasion and cell cycle of gastric cancer cells. Tumorsphere formation assay and flow cytometry were performed to detail the stemness of gastric cancer stem cells (GCSCs). Xenograft models in nude mice were established to investigate the role of the miR-144-3p in vivo. Results GLI2 was frequently upregulated in GC and indicated a poor survival. Meanwhile, miR-144-3p was downregulated and negatively correlated with GLI2 in GC. GLI2 was a direct target gene of miR-144-3p. MiR-144-3p overexpression inhibited proliferation, migration and invasion of gastric cancer cells. Enhanced miR-144-3p expression inhibited tumorsphere formation and CD44 expression of GCSCs. Restoration of GLI2 expression partly reversed the suppressive effect of miR-144-3p. Xenograft assay showed that miR-144-3p could inhibit the tumorigenesis of GC in vivo. Conclusions MiR-144-3p was downregulated and served as an essential tumor suppressor in GC. Mechanistically, miR-144-3p inhibited gastric cancer progression and stemness by, at least in part, regulating GLI2 expression.


Sign in / Sign up

Export Citation Format

Share Document