scholarly journals Galectin-3 Mediated Inflammatory Response Contributes to Neurological Recovery by QiShenYiQi in Subacute Stroke Model

2021 ◽  
Vol 12 ◽  
Author(s):  
Yule Wang ◽  
Shuang He ◽  
Xinyan Liu ◽  
Zhixiong Li ◽  
Lin Zhu ◽  
...  

Effective therapies for stroke are still limited due to its complex pathological manifestations. QiShenYiQi (QSYQ), a component-based Chinese medicine capable of reducing organ injury caused by ischemia/reperfusion, may offer an alternative option for stroke treatment and post-stroke recovery. Recently, we reported a beneficial effect of QSYQ for acute stroke via modulation of the neuroinflammatory response. However, if QSYQ plays a role in subacute stroke remains unknown. The pharmacological action of QSYQ was investigated in experimental stroke rats which underwent 90 min ischemia and 8 days reperfusion in this study. Neurological and locomotive deficits, cerebral infarction, brain edema, and BBB integrity were assessed. TMT-based quantitative proteomics were performed to identify differentially expressed proteins following QSYQ treatment. Immunohistochemistry, western blot analysis, RT-qPCR, and ELISA were used to validate the proteomics data and to reveal the action mechanisms. Therapeutically, treatment with QSYQ (600 mg/kg) for 7 days significantly improved neurological recovery, attenuated infarct volume and brain edema, and alleviated BBB breakdown in the stroke rats. Bioinformatics analysis indicated that protein galectin-3 and its mediated inflammatory response was closely related to the beneficial effect of QSYQ. Specially, QSYQ (600 mg/kg) markedly downregulated the mRNA and protein expression levels of galectin-3, TNF-α, and IL-6 in CI/RI brain as well as serum levels of TNF-α and IL-6. Overall, our findings showed that the effective action of QSYQ against the subacute phase of CI/RI occurs partly via regulating galectin-3 mediated inflammatory reaction.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Awadhesh K. Arya ◽  
Kurt Hu ◽  
Lalita Subedi ◽  
Tieluo Li ◽  
Bingren Hu

AbstractResuscitative endovascular balloon occlusion of the aorta (REBOA) is a lifesaving maneuver for the management of lethal torso hemorrhage. However, its prolonged use leads to distal organ ischemia–reperfusion injury (IRI) and systemic inflammatory response syndrome (SIRS). The objective of this study is to investigate the blood-based biomarkers of IRI and SIRS and the efficacy of direct intestinal cooling in the prevention of IRI and SIRS. A rat lethal hemorrhage model was produced by bleeding 50% of the total blood volume. A balloon catheter was inserted into the aorta for the implementation of REBOA. A novel TransRectal Intra-Colon (TRIC) device was placed in the descending colon and activated from 10 min after the bleeding to maintain the intra-colon temperature at 37 °C (TRIC37°C group) or 12 °C (TRIC12°C group) for 270 min. The upper body temperature was maintained at as close to 37 °C as possible in both groups. Blood samples were collected before hemorrhage and after REBOA. The organ injury biomarkers and inflammatory cytokines were evaluated by ELISA method. Blood based organ injury biomarkers (endotoxin, creatinine, AST, FABP1/L-FABP, cardiac troponin I, and FABP2/I-FABP) were all drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated these increased organ injury biomarkers. Plasma levels of pro-inflammatory cytokines TNF-α, IL-1b, and IL-17F were also drastically increased in TRIC37°C group after REBOA. TRIC12°C significantly downregulated the pro-inflammatory cytokines. In contrast, TRIC12°C significantly upregulated the levels of anti-inflammatory cytokines IL-4 and IL-10 after REBOA. Amazingly, the mortality rate was 100% in TRIC37°C group whereas 0% in TRIC12°C group after REBOA. Directly cooling the intestine offered exceptional protection of the abdominal organs from IRI and SIRS, switched from a harmful pro-inflammatory to a reparative anti-inflammatory response, and mitigated mortality in the rat model of REBOA management of lethal hemorrhage.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Kenneth C. Norbury ◽  
Mary Pat Moyer

In a swine model of ischemia/reperfusion injury coupled with sepsis, we have previously shown attenuation of secondary organ injury and decreased mortality with negative pressure therapy (NPT). We hypothesized that NPT modulates the intestinal microenvironment by mediating the innate immune system. Sepsis was induced in 12 anesthetized female pigs. Group 1 (n=6) was decompressed at 12 hrs after injury (T12) and treated with standard of care (SOC), and group 2 (n=6) with NPT for up toT48. Immunoparalysis was evident as lymphocytopenia atT24in both groups; however, survival was improved in the NPT group versus SOC (Odds ratio = 4.0). The SOC group showed significant reduction in lymphocyte numbers compared to NPT group byT48(p<0.05). The capacity of peritoneal fluid to stimulate a robust reactive oxygen species responsein vitrowas greater for the NPT group, peaking atT24for both M1 (p=0.0197) and M2 macrophages (p=0.085). Plasma elicited little if any effect which was confirmed by microarray analysis. In this septic swine model NPT appeared to modulate the intestinal microenvironment, facilitating an early robust, yet transient, host defense mediated by M1 and M2 macrophages. NPT may help overcome immunoparalysis that occurs during inflammatory response to septic injury.


2019 ◽  
Author(s):  
Jun Chen ◽  
Xue Wang ◽  
Jian Hu ◽  
Wenting Huang ◽  
Confidence Dordoe ◽  
...  

Abstract Background :Blood-brain barrier (BBB) disruption and the cerebral inflammatory response are two reciprocal mechanisms that work together to mediate the degree of brain edema, which is responsible for the majority of deaths after traumatic brain injury (TBI), and facilitate further brain damage, which leads to long-term TBI complications. Fibroblast growth factor 20 (FGF20), a neurotrophic factor, plays important roles in the development of dopaminergic neurons in Parkinson disease (PD). However, little is known about the role of FGF20 in TBI. The aim of the current study was to assess the protective effects of FGF20 in TBI through protecting the BBB. Methods: We explored the relationship between FGF20 and BBB function in controlled cortical impact (CCI)-induced TBI mice model and TNF-α-induced human brain microvascular endothelial cell (HBMEC) in vitro BBB disruption model. We also explored the mechanisms of these interactions and the signaling processes involved in BBB function and neuroinflammation. Results: In this study, we demonstrate that recombinant human FGF20 (rhFGF20) reduced neurofunctional deficits, brain edema and Evans Blue penetration in vivo after TBI. In an in vitro BBB disruption model of, rhFGF20 could reverse changes to TNF-α-induced HBMEC morphology, reduce Transwell permeability, and increase transendothelial electrical resistance (TEER). In both a TBI mouse model and in vitro , rhFGF20 upregulated the expression of BBB-associated tight junction (TJ) protein and adherens junction (AJ) protein via the AKT/GSK3β pathway. In addition, rhFGF20 inhibited the cerebral inflammatory response through regulating the JNK/NFκB pathway and further protected the function of the BBB. Conclusions : Our results contribute to a new treatment strategy in TBI research. FGF20 is a potential candidate to treat TBI as it protects the BBB via regulating the AKT/GSK3β and JNK/NFκB signaling pathways.


2021 ◽  
Author(s):  
Yun Ding ◽  
Pengjie Tu ◽  
Yiyong Chen ◽  
Yangyun Huang ◽  
Xiaojie Pan ◽  
...  

Abstract Background Cytochrome P450 epoxygenase 2J2 (CYP2J2) metabolizes arachidonic acid to epoxyeicosatrienoic acids (EETs), which exert anti-inflammatory, anti-apoptotic, pro-proliferative, and antioxidant effects on the cardiovascular system. However, the role of CYP2J2 and EETs in pulmonary arterial hypertension (PAH) with lung ischemia-reperfusion injury (LIRI) remains unclear. In the present study, we investigated the effects of CYP2J2 overexpression and exogenous EETs on PAH with LIRI in vitro and in vivo.Methods CYP2J2 gene was transfected into rat lung tissue by recombinant adeno-associated virus (rAAV) to increase the levels of EETs in serum and lung tissue. A rat model of PAH with LIRI was constructed by tail vein injection of monocrotaline (50 mg/kg) for 4 weeks, followed by clamping of the left pulmonary hilum for 1 h and reperfusion for 2 h. In addition, we established a cellular model of human pulmonary artery endothelial cells (HPAECs) with TNF-α combined with hypoxic reoxygenation (anoxia for 8 h and reoxygenation for 16 h) to determine the effect and mechanism of exogenous EETs.Results CYP2J2 overexpression significantly reduced the inflammatory response, oxidative stress and apoptosis associated with lung injury in PAH with LIRI. In addition, exogenous EETs suppressed inflammatory response and reduced intracellular reactive oxygen species (ROS) production and inhibited apoptosis in a tumor necrosis factor alpha (TNF-α) combined hypoxia-reoxygenation model of HPAECs. Our further studies revealed that the anti-inflammatory effects of CYP2J2 overexpression and EETs might be mediated by PPARγ pathway; the anti-apoptotic effects might be mediated by the PI3K/Ak pathway.Conclusions CYP2J2 overexpression and EETs protect against PAH with LIRI via anti-inflammation, anti-oxidative stress and anti-apoptosis, suggesting that increased levels of EETs may be a promising strategy for the prevention and treatment of PAH with LIRI.


2009 ◽  
Vol 296 (1) ◽  
pp. G9-G14 ◽  
Author(s):  
Jeffrey R. Scott ◽  
Mark A. Cukiernik ◽  
Michael C. Ott ◽  
Aurelia Bihari ◽  
Amit Badhwar ◽  
...  

Heme oxygenase (HO) represents the rate-limiting enzyme in the degradation of heme into carbon monoxide (CO), iron, and biliverdin. Recent evidence suggests that several of the beneficial properties of HO, may be linked to CO. The objectives of this study were to determine if low-dose inhaled CO reduces remote intestinal leukocyte recruitment, proinflammatory cytokine expression, and oxidative stress elicited by hindlimb ischemia-reperfusion (I/R). Male mice underwent 1 h of hindlimb ischemia, followed by 3 h of reperfusion. Throughout reperfusion, mice were exposed to AIR or AIR + CO (250 ppm). Following reperfusion, the distal ileum was exteriorized to assess the intestinal inflammatory response by quantifying leukocyte rolling and adhesion in submucosal postcapillary venules with the use of intravital microscopy. Ileum samples were also analyzed for proinflammatory cytokine expression [tumor necrosis factor (TNF)-α and interleukin (IL)-1β] and malondialdehyde (MDA) with the use of enzyme-linked immunosorbent assay and thiobarbituric acid reactive substances assays, respectively. I/R + AIR led to a significant decrease in leukocyte rolling velocity and a sevenfold increase in leukocyte adhesion. This was also accompanied by a significant 1.3-fold increase in ileum MDA and 2.3-fold increase in TNF-α expression. Treatment with AIR + CO led to a significant reduction in leukocyte recruitment and TNF-α expression elicited by I/R; however, MDA levels remained unchanged. Our data suggest that low-dose inhaled CO selectively attenuates the remote intestinal inflammatory response elicited by hindlimb I/R, yet does not provide protection against intestinal lipid peroxidation. CO may represent a novel anti-inflammatory therapeutic treatment to target remote organs following acute trauma and/or I/R injury.


2002 ◽  
Vol 283 (2) ◽  
pp. G408-G414 ◽  
Author(s):  
Fabienne Tamion ◽  
Vincent Richard ◽  
Yann Lacoume ◽  
Christian Thuillez

Intestinal ischemia-reperfusion has been implicated in the systemic inflammatory response and organ injury in hemorrhagic shock, but the exact role of the intestine has never been directly demonstrated. Preconditioning (PC) with brief periods of intermittent ischemia is a known potent anti-ischemic intervention and thus can be used as a tool to assess the role of local intestinal ischemia-reperfusion injury in systemic inflammatory response. Thus rats were first subjected to sham surgery or intestinal preconditioning with four cycles of 1-min ischemia and 10 min of reperfusion 24 h before hemorrhagic shock followed by resuscitation. PC reduced fluid requirements, lung edema, and lactate and tumor necrosis factor-α production. These effects were abolished by the heme-oxygenase-1 (HO-1) inhibitor tin protoporphyrin (Sn-PP). PC induced more than fivefold in intestinal HO-1 expression. These results suggest that intestinal ischemia-reperfusion is a major trigger for inflammatory response and organ injury in nonseptic shock. HO-1 appears to play an important role in the protective effect of intestinal preconditioning.


2011 ◽  
Vol 300 (4) ◽  
pp. H1518-H1529 ◽  
Author(s):  
Shayna T. Bradford ◽  
Svetlana M. Stamatovic ◽  
Raj S. Dondeti ◽  
Richard F. Keep ◽  
Anuska V. Andjelkovic

A substantial body of evidence suggests that nicotine adversely affects cerebral blood flow and the blood-brain barrier and is a risk factor for stroke. The present study investigated the effect of nicotine on cerebrovascular endothelium under basal and ischemia/reperfusion injury under in vivo condition. Nicotine (2 mg/kg sc) was administered to mice over 14 days, which resulted in plasma nicotine levels of ∼100 ng/ml, reflecting plasma concentrations in average to heavy smokers. An analysis of the phenotype of isolated brain microvessels after nicotine exposure indicated higher expression of inflammatory mediators, cytokines (IL-1β, TNF-α, and IL-18), chemokines (CCL2 and CX3CL1), and adhesion molecules (ICAM-1, VCAM-1, and P-selectins), and this was accompanied by enhanced leukocyte infiltration into brain during ischemia/reperfusion ( P < 0.01). Nicotine had a profound effect on ischemia/reperfusion injury; i.e., increased brain infarct size ( P < 0.01), worse neurological deficits, and a higher mortality rate. These experiments illuminate, for the first time, how nicotine regulates brain endothelial cell phenotype and postischemic inflammatory response at the brain-vascular interface.


2001 ◽  
Vol 21 (6) ◽  
pp. 683-689 ◽  
Author(s):  
John S. Beech ◽  
Jill Reckless ◽  
David E. Mosedale ◽  
David J. Grainger ◽  
Steve C. R. Williams ◽  
...  

Cerebral ischemia–reperfusion injury is associated with a developing inflammatory response with pathologic contributions from vascular leukocytes and endogenous microglia. Signaling chemokines orchestrate the communication between the different inflammatory cell types and the damaged tissue leading to cellular chemotaxis and lesion occupation. Several therapies aimed at preventing this inflammatory response have demonstrated neuroprotective efficacy in experimental models of stroke, but to date, few investigators have used the chemokines as potential therapeutic targets. In the current study, the authors investigate the neuroprotective action of NR58–3.14.3, a novel broad-spectrum inhibitor of chemokine function (both CXC and CC types), in a rat model of cerebral ischemia–reperfusion injury. Rats were subjected to 90 minutes of focal ischemia by the filament method followed by 72 hours of reperfusion. Both the lesion volume, measured by serial magnetic resonance imaging, and the neurologic function were assessed daily. Intravenous NR58–3.14.3 was administered, 2 mg/kg bolus followed by 0.5 mg/kg · hour constant infusion for the entire 72-hour period. At 72 hours, the cerebral leukocytic infiltrate, tumor necrosis factor-α (TNF-α), and interleukin-8 (IL-8)-like cytokines were analyzed by quantitative immunofluorescence. NR58–3.14.3 significantly reduced the lesion volume by up to 50% at 24, 48, and 72 hours post–middle cerebral artery occlusion, which was associated with a marked functional improvement to 48 hours. In NR58–3.14.3-treated rats, the number of infiltrating granulocytes and macrophages within perilesional regions were reduced, but there were no detectable differences in inflammatory cell numbers within core ischemic areas. The authors reported increased expression of the cytokines, TNF-α, and IL-8–like cytokines within the ischemic lesion, but no differences between the NR58–3.14.3-treated rats and controls were reported. Although chemokines can have pro-or antiinflammatory action, these data suggest the overall effect of chemokine up-regulation and expression in ischemia–reperfusion injury is detrimental to outcome.


Open Medicine ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 033-040
Author(s):  
Haolan Li ◽  
Aichen Sun ◽  
Taocheng Meng ◽  
Yan Zhu

AbstractIn this research, we attempted to explain the effect and the related molecular mechanisms of ABIN1 in lipopolysaccharide (LPS)-induced septic mice or RAW264.7 macrophages. LPS was adopted to treat RAW264.7 macrophages for 4 h, and the levels of inflammatory factors were assessed by ELISA. Besides, ABIN1 expression was measured by quantitative reverse transcription polymerase chain reaction. Apparently, LPS enhanced immunoreaction, suggested by increased expression of IL-1β, tumor necrosis factor (TNF)-α, and IL-6. ABIN1 levels were obviously reduced compared to the control. Furthermore, we evaluated the roles of ABIN1-plasmid in immunoreaction and nuclear factor-κB (NF-κB) pathway. We found that ABIN1-plasmid significantly reduced the expression of IL-1β, TNF-α, and IL-6 in LPS-treated cells and inhibited NF-κB pathway activation. Meanwhile, a septic mouse mode was conducted to validate the role of ABIN1 in inflammatory response and organ damage in vivo. These data suggested that ABIN1-plasmid significantly inhibited the secretion of inflammatory cytokines and Cr, BUN, AST, and ALT levels in the serum of LPS-stimulated mice compared to LPS + control-plasmid group, reflecting the relieved inflammation and organ injury. In summary, the present findings indicated that ABIN1 alleviated sepsis by repressing inflammatory response through NF-κB signaling pathway, emphasizing the potential value of ABIN1 as therapeutic strategy for sepsis.


2005 ◽  
Vol 288 (2) ◽  
pp. E321-E326 ◽  
Author(s):  
Meijing Wang ◽  
Lauren Baker ◽  
Ben M. Tsai ◽  
Kirstan K. Meldrum ◽  
Daniel R. Meldrum

The myocardium generates inflammatory mediators during ischemia-reperfusion (I/R), and these mediators contribute to cardiac functional depression and apoptosis. The great majority of these data have been derived from male animals and humans. Sex has a profound effect over many inflammatory responses; however, it is unknown whether sex affects the cardiac inflammatory response to acute myocardial I/R. We hypothesized the existence of inherent sex differences in myocardial function, expression of inflammatory cytokines, and activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway after I/R. Isolated rat hearts from age-matched adult males and females were perfused (Langendorff), and myocardial contractile function was continuously recorded. After I/R, myocardium was assessed for expression of TNF-α, IL-1β, and IL-6 (RT-PCR, ELISA); IL-1α and IL-10 mRNA (RT-PCR); and activation of p38 MAPK (Western blot). All indexes of postischemic myocardial function [left ventricular developed pressure, left ventricular end-diastolic pressure, and maximal positive (+dP/d t) and negative (−dP/d t) values of the first derivative of pressure] were significantly improved in females compared with males. Compared with males, females had decreased myocardial TNF-α, IL-1β, and IL-6 (mRNA, protein) and decreased activation of p38 MAPK pathway. These data demonstrate that hearts from age-matched adult females are relatively protected against I/R injury, possibly due to a diminished inflammatory response.


Sign in / Sign up

Export Citation Format

Share Document