scholarly journals Unconjugated Bilirubin Attenuates DSS-Induced Colitis Potentially via Enhancement of Bilirubin Reabsorption

2021 ◽  
Vol 12 ◽  
Author(s):  
Chong Zhao ◽  
Hongli Huang ◽  
Qiuhua Pan ◽  
Wenqi Huang ◽  
Wu Peng ◽  
...  

Studies increasingly show that ulcerative colitis (UC) is a consequence of an imbalance between oxidative stress and antioxidant capacity. Bilirubin exerts an anti-inflammatory effect by scavenging reactive oxygen species (ROS), although the exact mechanism is not completely understood. The aim of this study was to determine the role of serum bilirubin in UC using patient data and a mouse model of dextran sodium sulfate (DSS)-induced colitis. We found that low levels of serum bilirubin correlated to a higher risk of UC in a retrospective case-control population. Pre-treatment with exogenous unconjugated bilirubin (UCB) significantly enhanced colonic bilirubin absorption in mice, and attenuated the DSS-induced body weight loss, colon shortening and histopathological damage. Mechanistically, bilirubin prevented the infiltration of inflammatory cells, and decreased the levels of myeloperoxidase and pro-inflammatory cytokines in the serum and colon. Moreover, bilirubin inhibited ROS and malondialdehyde production, scavenged superoxide anions (O2·−) from the colon and enhanced the total antioxidant capacity. In conclusion, exogenous UCB attenuated DSS-induced colitis by directly scavenging O2·− and enhancing bilirubin reabsorption in the colon via enterohepatic cycling.

2006 ◽  
Vol 86 (2) ◽  
pp. 304-309 ◽  
Author(s):  
Mohamed Bedaiwy ◽  
Ashok Agarwal ◽  
Tamer M. Said ◽  
Jeffery M. Goldberg ◽  
Rakesh K. Sharma ◽  
...  

Author(s):  
Anita Patel ◽  
Henriette Frikke-Schmidt ◽  
Olivier Bezy ◽  
Paul V Sabatini ◽  
Nikolaj Rittig ◽  
...  

Growth differentiation factor 15 (GDF15), a TGFβ superfamily cytokine, acts through its receptor, GDNF-family receptor α-like (GFRAL), to suppress food intake and promote nausea. GDF15 is broadly expressed at low levels but increases in states of disease such as cancer, cachexia, and sepsis. Whether GDF15 is necessary for inducing sepsis associated anorexia and body weight loss is currently unclear. To test this we used a model of moderate systemic infection in GDF15KO and GFRALKO mice with lipopolysaccharide (LPS) treatment to define the role of GDF15 signaling in infection-mediated physiologic responses. Since physiologic responses to LPS depend on housing temperature, we tested the effects of subthermoneutral and thermoneutral conditions on eliciting anorexia and inducing GDF15. Our data demonstrate a conserved LPS-mediated increase in circulating GDF15 levels in mouse, rat and human. However, we did not detect differences in LPS induced anorexia between WT and GDF15KO or GFRALKO mice. Further, there were no differences in anorexia or circulating GDF15 levels at either thermoneutral or subthermoneutral housing conditions in LPS treated mice. These data demonstrate that GDF15 is not necessary to drive food intake suppression in response to moderate doses of LPS.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3785-3785
Author(s):  
Borys Hrinczenko

Abstract Sickle cell anemia (SCA) is an inherited blood disorder of hemoglobin function. A genetic mutation results in the substitution of a valine for glutamic acid residue at position 6 of the beta-globin chain yielding the mutant hemoglobin S (HbS). HbS polymerizes within erythrocytes during deoxygenation resulting in altered affinity of oxygen binding. The slightly different P50 (PO2 at which Hb is half-saturated with oxygen) values of sickle erythrocytes obtained during either oxygenation or deoxygenation (hysteresis) demonstrate HbS polymerization induced inhibition of oxygen affinity. Nitric oxide (NO) has been found to be an important signaling molecule in the circulatory system. NO derivatives of Hb provide insights into the physiological role of Hb. NO can bind to Hb at either the heme moiety forming nitrosylhemoglobin (HbNO) or to the conserved beta-93 cysteine yielding S-nitrosohemoglobin (SNO-Hb). In deoxygenated venous blood NO preferentially binds to the hemes of Hb forming HbNO while in oxygenated arterial blood NO binds to the beta-93 cysteine residues forming SNO-Hb. Increased oxygen affinity is seen in both SNO-Hb (Bonaventura C, et al, 1999) and also with HbNO. Decreasing the HbS P50 inhibits intra-erythrocyte HbS polymerization that may be an effective strategy to treat SCA. Clinical trials of NO breathing effects on oxygen affinity are conflicting. One study found an increased oxygen affinity of blood from SCA patients breathing 80 ppm NO with no effect seen in normal controls (Head A, et al, 1997). Another study found that levels of NO bound to Hb are too low to affect overall oxygen affinity (Gladwin M, et al, 1999). The purpose of this in vitro study was to determine the oxygen affinity of deoxygenated sickle erythrocytes pre-treated with exogenous NO donors. Blood from SCA (HbSS) and normal controls (HbAA) were collected and suspended in PBS buffer and deoxygenated with argon gas. The Hb concentration of each sample was calculated and then was either left untreated (control) or treated with varying concentrations of NO donors. The NO donors included: 2-(N, N-diethylamino)-diazenolate-2-oxide (DEANO), S-nitroso-N-acetylpenicillamine (SNAP), sodium nitroprusside (SNP), an aqueous solution of NO, and sodium trioxodinitrate (Angeli’s salt, AS). Methemoglobin and protein degradation were negligible. Samples were then transferred via airtight syringes into a stirred and temperature controlled (37°C) chamber of PBS solution at ambient oxygen pressure fitted with a very sensitive oxygen electrode. Oxygen levels were measured in real time. The amount of oxygen extracted from the PBS medium followed first order kinetics. Studies with HbSS red cell suspensions showed that the largest increment in oxygen extraction from the medium was obtained with DEANO pre-treatment. Calculations indicated that low levels of NO treatment, at approximately a 1:1000 ratio of [NO]/[heme], yielded the largest oxygen consumption. The effects of pre-treatment with the other NO donors on sickle erythrocytes (HbSS) were not as pronounced. DEANO is an NO donor yielding a “pure” NO radical as opposed to other redox forms. Similar studies with HbAA and HbSC did not show increases in oxygen extraction. Taken together the data suggest that low levels of NO perturb the quaternary structure of intraerythrocyte HbS polymer allowing depolymerization and increased oxygen affinity. The hope is that these in vitro studies will better characterize the role of NO in its interactions with Hb and the red cell and to use this knowledge for potential therapies in diseases such as SCA.


2004 ◽  
Vol 82 ◽  
pp. S195-S196 ◽  
Author(s):  
M.A. Bedaiwy ◽  
A. Agarwal ◽  
T.M. Said ◽  
S. Worley ◽  
J. Thornton ◽  
...  

2017 ◽  
Vol 249 ◽  
pp. 200-205 ◽  
Author(s):  
Armando L. Morera-Fumero ◽  
Estefanía Díaz-Mesa ◽  
Pedro Abreu-Gonzalez ◽  
Lourdes Fernandez-Lopez ◽  
Maria del Rosario Cejas-Mendez

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Giovanna De Cunto ◽  
Arianna Lamberti ◽  
Maria Margherita de Santi ◽  
Clelia Miracco ◽  
Michele Fimiani ◽  
...  

Little is known about the cause and pathophysiology of middermal elastolysis (MDE). In this condition, variable inflammatory infiltrate may be present or not together with loss of elastic fibres in the middermis that spares both papillary and lower reticular dermis. MDE may be a consequence of abnormal extracellular matrix degradation related to an imbalance between elastolytic enzymes released from inflammatory and resident cells and their naturally occurring inhibitors. However, the cause of this imbalance is still an object of investigation. In order to shed light on the role of fibroblasts in MDE, we used fibroblast cultures from MDE and control subjects to evaluate matrix metalloproteinases (MMPs) and their major inhibitor TIMP-1, which in combination with neutrophil or macrophage proteases released in inflamed areas may influence the elastolytic burden. We demonstrate that fibroblasts derived from MDE produce in vitro low levels of TIMP-1, the major inhibitor of MMPs. Elevated levels of MMP-2, MMP-14, and TIMP-2 capable to activate in a cooperative manner pro-MMP-2 are present in MDE tissue samples. Additionally, significant reaction for MMP-1 is present in the same MDE areas. These data all together suggest that ECM changes in MDE are due to cooperation of different cell populations (i.e., inflammatory cells and fibroblasts).


2020 ◽  
Vol 10 (2) ◽  
pp. 110 ◽  
Author(s):  
Leonardo Lorente ◽  
María M. Martín ◽  
Antonia Pérez-Cejas ◽  
Agustín F. González-Rivero ◽  
Pedro Abreu-González ◽  
...  

Objective: Oxidation is involved in secondary brain injury after traumatic brain injury (TBI). Increased concentrations of total antioxidant capacity (TAC) in blood at the time of admission for TBI have been found in non-surviving patients. The main objective of this study was to determine the role of serum TAC levels at any time during the first week of TBI for the prediction of early mortality. Methods: Isolated (<10 points in non-cranial aspects of Injury Severity Score) and severe (<9 points in Glasgow Coma Scale) TBI patients were included. Serum TAC concentrations at days 1, 4, and 8 of TBI were determined. The end-point study was 30-day mortality. Results: Higher serum TAC levels at days 1 (p < 0.001), 4 (p < 0.001), and 8 (p = 0.002) of TBI were found in non-surviving (n = 34) than in surviving patients (n = 90). The area under curve (95% Confidence Interval) for prediction of 30-day mortality by serum TAC concentrations at days 1, 4, and 8 of TBI were 0.79 (0.71–0.86; p < 0.001), 0.87 (0.79–0.93; p < 0.001), and 0.76 (0.67–0.84; p = 0.006) respectively. Conclusions: The novelty of our study was the ability to predict 30-day mortality by serum TAC concentrations at any time during the first week of TBI.


Sign in / Sign up

Export Citation Format

Share Document