scholarly journals Novel Mechanism for an Old Drug: Phenazopyridine is a Kinase Inhibitor Affecting Autophagy and Cellular Differentiation

2021 ◽  
Vol 12 ◽  
Author(s):  
Olivier Preynat-Seauve ◽  
Evelyne Bao-Vi Nguyen ◽  
Yvonne Westermaier ◽  
Margaux Héritier ◽  
Sébastien Tardy ◽  
...  

Phenazopyridine is a widely used drug against urinary tract pain. The compound has also been shown to enhance neural differentiation of pluripotent stem cells. However, its mechanism of action is not understood. Based on its chemical structure, we hypothesized that phenazopyridine could be a kinase inhibitor. Phenazopyridine was investigated in the following experimental systems: 1) activity of kinases in pluripotent stem cells; 2) binding to recombinant kinases, and 3) functional impact on pluripotent stem cells. Upon addition to pluripotent stem cells, phenazopyridine induced changes in kinase activities, particularly involving Mitogen-Activated Protein Kinases, Cyclin-Dependent Kinases, and AKT pathway kinases. To identify the primary targets of phenazopyridine, we screened its interactions with 401 human kinases. Dose-inhibition curves showed that three of these kinases interacted with phenazopyridine with sub-micromolar binding affinities: cyclin-G-associated kinase, and the two phosphatidylinositol kinases PI4KB and PIP4K2C, the latter being known for participating in pain induction. Docking revealed that phenazopyridine forms strong H-bonds with the hinge region of the ATP-binding pocket of these kinases. As previous studies suggested increased autophagy upon inhibition of the phosphatidyl-inositol/AKT pathway, we also investigated the impact of phenazopyridine on this pathway and found an upregulation. In conclusion, our study demonstrates for the first time that phenazopyridine is a kinase inhibitor, impacting notably phosphatidylinositol kinases involved in nociception.

Cells ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 3246
Author(s):  
Alexander Keller ◽  
Claudia Spits

Human pluripotent stem cells (hPSC) are known to acquire chromosomal abnormalities, which range from point mutations to large copy number changes, including full chromosome aneuploidy. These aberrations have a wide-ranging influence on the state of cells, in both the undifferentiated and differentiated state. Currently, very little is known on how these abnormalities will impact the clinical translation of hPSC, and particularly their potential to prime cells for oncogenic transformation. A further complication is that many of these abnormalities exist in a mosaic state in culture, which complicates their detection with conventional karyotyping methods. In this review we discuss current knowledge on how these aberrations influence the cell state and how this may impact the future of research and the cells’ clinical potential.


2019 ◽  
Vol 20 (16) ◽  
pp. 3932 ◽  
Author(s):  
Barbara Świerczek-Lasek ◽  
Jacek Neska ◽  
Agata Kominek ◽  
Łukasz Tolak ◽  
Tomasz Czajkowski ◽  
...  

Pluripotent stem cells convert into skeletal muscle tissue during teratoma formation or chimeric animal development. Thus, they are characterized by naive myogenic potential. Numerous attempts have been made to develop protocols enabling efficient and safe conversion of pluripotent stem cells into functional myogenic cells in vitro. Despite significant progress in the field, generation of myogenic cells from pluripotent stem cells is still challenging—i.e., currently available methods require genetic modifications, animal-derived reagents, or are long lasting—and, therefore, should be further improved. In the current study, we investigated the influence of interleukin 4, a factor regulating inter alia migration and fusion of myogenic cells and necessary for proper skeletal muscle development and maintenance, on pluripotent stem cells. We assessed the impact of interleukin 4 on proliferation, selected gene expression, and ability to fuse in case of both undifferentiated and differentiating mouse embryonic stem cells. Our results revealed that interleukin 4 slightly improves fusion of pluripotent stem cells with myoblasts leading to the formation of hybrid myotubes. Moreover, it increases the level of early myogenic genes such as Mesogenin1, Pax3, and Pax7 in differentiating embryonic stem cells. Thus, interleukin 4 moderately enhances competence of mouse pluripotent stem cells for myogenic conversion.


2021 ◽  
Author(s):  
Yale S Michaels ◽  
John M Edgar ◽  
Matthew C Major ◽  
Elizabeth L Castle ◽  
Carla Zimmerman ◽  
...  

T cells are key mediators of the adaptive immune response and show tremendous efficacy as cellular therapeutics. However, obtaining primary T cells from human donors is expensive and variable. Pluripotent stem cells (PSCs) have the potential to serve as a consistent and renewable source of T cells, but differentiating PSCs into hematopoietic progenitors with T cell potential remains a significant challenge. Here, we developed an efficient serum- and feeder-free protocol for differentiating human PSCs into hematopoietic progenitors and T cells. This defined method allowed us to study the impact of individual recombinant proteins on blood emergence and lineage potential. We demonstrate that the presence of DLL4 and VCAM1 during the endothelial-to-hematopoietic transition (EHT) enhances downstream progenitor T cell output by >80-fold. Using single cell transcriptomics, we showed that these two proteins synergise to drive strong notch signalling in nascent hematopoietic stem and progenitor cells and that VCAM1 additionally drives a pro-inflammatory transcriptional program. Finally, we applied this differentiation method to study the impact of cytokine concentration dynamics on T cell maturation. We established optimised media formulations that enabled efficient and chemically defined differentiation of CD8αβ+, CD4-, CD3+, TCRαβ+ T cells from PSCs.


2021 ◽  
Author(s):  
Gareth Chapman ◽  
Mouhamed Alsaqati ◽  
Sharna Lunn ◽  
Tanya Singh ◽  
Stefanie C Linden ◽  
...  

AbstractCopy Number Variation (CNV) at the 1q21.1 locus is associated with a range of neurodevelopmental and psychiatric disorders in humans, including abnormalities in head size and motor deficits. Yet, the functional consequences of these CNVs (both deletion and duplication) on neuronal development remain unknown. To determine the impact of CNV at the 1q21.1 locus on neuronal development, we generated induced pluripotent stem cells from individuals harbouring 1q21.1 deletion or duplication and differentiated them into functional cortical neurons. We show that neurons with 1q21.1 deletion or duplication display reciprocal phenotype with respect to proliferation, differentiation potential, neuronal maturation, synaptic density, and functional activity. Deletion of the 1q21.1 locus was also associated with an increased expression of lower cortical layer markers. This difference was conserved in the mouse model of 1q21.1 deletion, which displayed altered corticogenesis. Importantly, we show that neurons with 1q21.1 deletion and duplication are associated with differential expression of calcium channels and demonstrate that physiological deficits in neurons with 1q21.1 deletion or duplication can be pharmacologically modulated by targeting Ca2+ channel activity. These findings provide biological insight into the neuropathological mechanism underlying 1q21.1 associated brain disorder and indicate a potential target for therapeutic interventions.


2020 ◽  
Vol 7 (3) ◽  
pp. 92
Author(s):  
Mariana A. Branco ◽  
Joaquim M.S. Cabral ◽  
Maria Margarida Diogo

The knowledge acquired throughout the years concerning the in vivo regulation of cardiac development has promoted the establishment of directed differentiation protocols to obtain cardiomyocytes (CMs) and other cardiac cells from human pluripotent stem cells (hPSCs), which play a crucial role in the function and homeostasis of the heart. Among other developments in the field, the transition from homogeneous cultures of CMs to more complex multicellular cardiac microtissues (MTs) has increased the potential of these models for studying cardiac disorders in vitro and for clinically relevant applications such as drug screening and cardiotoxicity tests. This review addresses the state of the art of the generation of different cardiac cells from hPSCs and the impact of transitioning CM differentiation from 2D culture to a 3D environment. Additionally, current methods that may be employed to generate 3D cardiac MTs are reviewed and, finally, the adoption of these models for in vitro applications and their adaptation to medium- to high-throughput screening settings are also highlighted.


Sign in / Sign up

Export Citation Format

Share Document