scholarly journals Follistatin Attenuates Myocardial Fibrosis in Diabetic Cardiomyopathy via the TGF-β–Smad3 Pathway

2021 ◽  
Vol 12 ◽  
Author(s):  
Yinhui Wang ◽  
Kun Yu ◽  
Chengcheng Zhao ◽  
Ling Zhou ◽  
Jia Cheng ◽  
...  

Follistatin (FST) is an endogenous protein that irreversibly inhibits TGF-β superfamily members and plays an anti-fibrotic role in other diseases. However, the role of FST in diabetic cardiomyopathy remains unclear. In this study, we investigated the effects of FST on diabetic cardiomyopathy. The expression of FST was downregulated in the hearts of db/db mice. Remarkably, overexpressing FST efficiently protected against cardiac dysfunction. In addition, overexpression of FST promoted cardiac hypertrophy with an unchanged expression of atrial natriuretic peptide (ANP) and the ratio of myosin heavy chain-β/myosin heavy chain-α (MYH7/MYH6). Furthermore, FST reduced cardiac fibrosis and the production of reactive oxygen species (ROS), and enhanced matrix metallopeptidase 9 (MMP9) activities in db/db mouse hearts. We also observed that overexpressing FST decreased the level of transforming growth factor beta (TGF-β) superfamily members and the phosphorylation of Smad3; consistently, in vitro experiments also verified the above results. Our findings revealed the cardioprotective role of FST in attenuating diabetic cardiomyopathy through its anti-fibrotic effects through the TGF-β–Smad3 pathway and provided a promising therapeutic strategy for diabetic cardiomyopathy.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Sashwati Roy ◽  
Savita Khanna ◽  
Chandan K Sen

Background . Transforming growth factor beta-1 (TGFbeta-1) is a key cytokine implicated in the development of cardiac fibrosis following ischemia-reperfusion (IR) injury. The profibrotic effects of TGFbeta-1 are primarily attributable to the differentiation of cardiac fibroblasts (CF) to myofibroblasts. Previously, we have reported perceived hyperoxia (Circ Res 92:264 –71), sub-lethal reoxygenation shock during IR, induces differentiation of CF to myofibroblasts at the infarct site. The mechanisms underlying oxygen-sensitive induction of TGFbeta-1 mRNA remain to be characterized. Hypothesis . Fra2 mediates oxygen-induced TGFbeta-1 mRNA expression in adult cardiac fibroblasts. Methods. TGFbeta-1 mRNA expression in infarct tissue was investigated in an IR injury model. The left anterior descending coronary artery of mice was transiently occluded for 60 minutes followed by reperfusion to induce IR injury. Spatially resolved infarct and non-infarct tissues were collected at 0, 1, 3, 5, and 7 days post-IR using laser capture microdissection. TGFbeta-1 mRNA levels were measured using real-time PCR. To investigate the role of oxygen in the regulation of TGFbeta-1, we used our previously reported model of perceived hyperoxia where CF (from 5wks old mice) after isolation were cultured at 5%O 2 (physiological pO 2 ) followed by transferring them to 20%O 2 to induce hyperoxic insult. Results & Conclusions. In vivo, a significant increase (p<0.01; n=5) in TGFbeta-1 mRNA was observed at the infarct site already at day 1 post-IR. The levels continued to increase until day 7 post-IR. In vitro, exposure of CF to 20%O 2 hyperoxic insult induced TGFbeta-1 mRNA (p<0.001; n=4) and protein (p<0.01; n=4) expression. Using a TGFbeta-1 promoter-luciferase reporter and DNA binding assays, we collected first evidence that AP-1 and its component Fra2 as major mediators of oxygen-induced TGFbeta-1 expression. Exposure to 20%O 2 resulted in increased localization of Fra2 in nucleus. siRNA-dependent Fra-2 knock-down completely abrogated oxygen-induced TGFbeta1 expression. In conclusion, this study presents first evidence that Fra-2 is involved in inducible TGFbeta1 expression in CF. Fra2 was noted as being central in regulating oxygen-induced TGFbeta-1 expression.s


2017 ◽  
Vol 204 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
Gemma A. Figtree ◽  
Kristen J. Bubb ◽  
Owen Tang ◽  
Eddy Kizana ◽  
Carmine Gentile

Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures. To evaluate the validity of VCSs in recapitulating pathophysiological processes typical of the in vivo heart, such as cardiac fibrosis, we then treated VCSs with transforming growth factor beta 1 (TGFβ1), a known profibrotic agent. Our mRNA analysis demonstrated that TGFβ1-treated VCSs present elevated levels of expression of connective tissue growth factor, fibronectin, and TGFβ1 when compared to control cultures. We demonstrated a dramatic increase in collagen deposition following TGFβ1 treatment in VCSs in the PicroSirius Red-stained sections. Doxorubicin, a renowned cardiotoxic and profibrotic agent, triggered apoptosis and disrupted vascular networks in VCSs. Taken together, our findings demonstrate that VCSs are a valid model for the study of the mechanisms involved in cardiac fibrosis, with the potential to be used to investigate novel mechanisms and therapeutics for treating and preventing cardiac fibrosis in vitro.


2002 ◽  
Vol 283 (6) ◽  
pp. C1761-C1775 ◽  
Author(s):  
Richard W. Tsika ◽  
John McCarthy ◽  
Natalia Karasseva ◽  
Yangsi Ou ◽  
Gretchen L. Tsika

We examined the functional role of distinct muscle-CAT (MCAT) elements during non-weight-bearing (NWB) regulation of a wild-type 293-base pair β-myosin heavy chain (βMyHC) transgene. Electrophoretic mobility shift assays (EMSA) revealed decreased NTEF-1, poly(ADP-ribose) polymerase, and Max binding at the human distal MCAT element when using NWB soleus vs. control soleus nuclear extract. Compared with the wild-type transgene, expression assays revealed that distal MCAT element mutation decreased basal transgene expression, which was decreased further in response to NWB. EMSA analysis of the human proximal MCAT (pMCAT) element revealed low levels of NTEF-1 binding that did not differ between control and NWB extract, whereas the rat pMCAT element displayed robust NTEF-1 binding that decreased when using NWB soleus extracts. Differences in binding between human and rat pMCAT elements were consistent whether using rat or mouse nuclear extract or in vitro synthesized human TEF-1 proteins. Our results provide the first evidence that 1) different binding properties and likely regulatory functions are served by the human and rat pMCAT elements, and 2) previously unrecognized βMyHC proximal promoter elements contribute to NWB regulation.


1990 ◽  
Vol 267 (1) ◽  
pp. 133-140 ◽  
Author(s):  
A Subramaniam ◽  
M Thirunavukkarasu ◽  
C Rajamanickam

The 100,000 g supernatant isolated from hypertrophic hearts on fractionation by (NH4)2SO4 and DEAE-cellulose chromatography showed an enhanced RNA-transport activity when incubated with isolated nuclei from sham-operated hearts in vitro. Proteins of Mr 73,000, 68,000, 43,000 and 32,000 are enriched in the DEAE-cellulose fractions exhibiting maximal transport activity, and they are phosphorylatable. Pretreatment of the cytosol with antibodies to the Mr-68,000 and -32,000 proteins decreases the transport activity of the cytosol from 14% to 4.25%. Proteins of Mr 73,000, 68,000, 43,000 and 32,000 are translocated from the cytosol to the nuclear envelope under conditions of RNA transport in vitro. Our results here suggest that at least two of these proteins, those of Mr 68,000 and 32,000, play an indispensible role in the nucleocytoplasmic RNA transport in vitro. By making use of a specific myosin heavy-chain B-gene probe and hybridization, we have also shown the effect of cytosol on the transport of myosin heavy-chain mRNA from nucleus to cytosol.


2016 ◽  
Vol 38 (5) ◽  
pp. 1928-1938 ◽  
Author(s):  
Mian Cheng ◽  
Gang Wu ◽  
Yue Song ◽  
Lin Wang ◽  
Ling Tu ◽  
...  

Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC) in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1), extracellular signal regulated kinases 1/2 (ERK1/2) signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs) were treated with TGF-β1 and transfected with microRNA-21(miR21). Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA), atrial natriuretic peptide (ANP), brain natriuretic peptides (BNP), beta-myosin heavy chain (β-MHC), miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.


2021 ◽  
Vol 22 (11) ◽  
pp. 6059
Author(s):  
Talha Ijaz ◽  
Michael A. Burke

Heart failure is a complex disease process with underlying aberrations in neurohormonal systems that promote dysregulated cellular signaling and gene transcription. Over the past 10 years, the advent of small-molecule inhibitors that target transcriptional machinery has demonstrated the importance of the bromodomain and extraterminal (BET) family of epigenetic reader proteins in regulating gene transcription in multiple mouse models of cardiomyopathy. BETs bind to acetylated histone tails and transcription factors to integrate disparate stress signaling networks into a defined gene expression program. Under myocardial stress, BRD4, a BET family member, is recruited to superenhancers and promoter regions of inflammatory and profibrotic genes to promote transcription elongation. Whole-transcriptome analysis of BET-dependent gene networks suggests a major role of nuclear-factor kappa b and transforming growth factor-beta in the development of cardiac fibrosis and systolic dysfunction. Recent investigations also suggest a prominent role of BRD4 in maintaining cardiomyocyte mitochondrial respiration under basal conditions. In this review, we summarize the data from preclinical heart failure studies that explore the role of BET-regulated transcriptional mechanisms and delve into landmark studies that define BET bromodomain-independent processes involved in cardiac homeostasis.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 41
Author(s):  
Michela Campolo ◽  
Marika Lanza ◽  
Giovanna Casili ◽  
Irene Paterniti ◽  
Alessia Filippone ◽  
...  

Glioblastoma (GBM) is a brain tumor characterized by poor therapeutic response and overall survival. Despite relevant progress in conventional treatments represented by the clinical use of temozolomide (TMZ), a combination of approaches might be a possible future direction for treating GBM. Transforming growth factor-beta-activated kinase-1 (TAK1) is an essential component in genotoxic stresses-induced NF-κB-activation and mitogen-activated protein kinase (MAPK)-pathways; however, the role of TAK1 in GBM-chemoresistance remains unknown. This study aimed to verify, in GBM human cell lines, in an in vivo U87-xenograft model and in TMZ-treated-patients, the effect of TAK1 inhibition on the sensitivity of GBM cells to chemotherapy. In vitro model, using GBM cell lines, showed that 5Z-7-oxozeaenol augmented the cytotoxic effects of TMZ, blocking TMZ-induced NF-κB-activation, reducing DNA-damage and enhancing TMZ-induced apoptosis in GMB cell lines. We showed a reduction in tumor burden as well as tumor volume in the xenograft model following the treatment with 5Z-7-oxozaenol associated with TMZ. Our results showed a significant up-regulation in TAK1, p-p38, p-JNK and NF-κB in glioblastoma TMZ-treated-patients and denoted the role of 5Z-7-oxozeaenol in increasing the sensitivity of GBM cells to chemotherapy, proving to be an effective coadjuvant to current GBM chemotherapeutic regimens, suggesting a new option for therapeutic treatment of GBM.


2021 ◽  
Vol 22 (15) ◽  
pp. 7838
Author(s):  
Paola Arboretto ◽  
Michele Cillo ◽  
Antonio Leonardi

The transforming growth factor beta (TGF-β) signaling is fundamental for correct embryonic development. However, alterations of this pathway have been correlated with oncogenesis, tumor progression and sustaining of cancer stem cells (CSCs). Cripto-1 (CR-1) and Nodal are two embryonic proteins involved in TGF-β signaling. Their expression is almost undetectable in terminally differentiated cells, but they are often re-expressed in tumor cells, especially in CSCs. Moreover, cancer cells that show high levels of CR-1 and/or Nodal display more aggressive phenotypes in vitro, while in vivo their expression correlates with a worse prognosis in several human cancers. The ability to target CSCs still represents an unmet medical need for the complete eradication of certain types of tumors. Given the prognostic role and the selective expression of CR-1 and Nodal on cancer cells, they represent archetypes for targeted therapy. The aim of this review is to clarify the role of CR-1 and Nodal in cancer stem populations and to summarize the current therapeutic strategy to target CSCs using monoclonal antibodies (mAbs) or other molecular tools to interfere with these two proteins.


Author(s):  
Anuradha Kalyanasundaram ◽  
Ning Li ◽  
Miranda L. Gardner ◽  
Esthela J. Artiga ◽  
Brian J. Hansen ◽  
...  

Background: Up to fifty percent of the adult human sinoatrial node (SAN), is composed of dense connective tissue. Cardiac diseases including heart failure (HF) may further increase fibrosis within the SAN pacemaker complex, leading to impaired automaticity and conduction of electrical activity to the atria. However, unlike the role of cardiac fibroblasts in pathological fibrotic remodeling and tissue repair, nothing is known about fibroblasts that maintain the inherently fibrotic SAN environment. Methods: Intact SAN pacemaker complex was dissected from cardioplegically arrested explanted non-failing (non-HF, n=22; 48.7±3.1y.o,) and HF human hearts (n=16; 54.9±2.6y.o.). Connective tissue content was quantified from Masson's trichrome stained head-center and center-tail SAN sections. Expression of extracellular matrix (ECM) proteins, including Collagens 1, 3A1, cartilage intermediate layer protein 1 (CILP1) and periostin, fibroblast and myofibroblast numbers were quantified by in situ and in vitro immunolabeling. Fibroblasts from the central intramural SAN pacemaker compartment (~10x5x2 mm 3 ) and right atria (RA) were isolated, cultured, passaged once, and treated ±transforming growth factor beta-1 (TGFβ1) and subjected to comprehensive high-throughput next-generation sequencing of whole transcriptome, microRNA and proteomic analyses. Results: Intranodal fibrotic content was significantly higher in SAN pacemaker complex from HF vs non-HF hearts (57.7±2.6% vs 44.0±1.2% p <0.0001). Proliferating phosphorylated histone3 + /vimentin + /CD31 - fibroblasts were higher in HF SAN. Vimentin + /alpha smooth muscle actin + /CD31 - myofibroblasts along with increased interstitial periostin expression were found only in HF SAN. RNA sequencing and proteomic analyses identified unique differences in mRNA, long non-coding RNA, microRNA and proteomic profiles between non-HF and HF SAN and RA fibroblasts, and TGFβ1-induced myofibroblasts. Specifically, proteins and signaling pathways associated with ECM flexibility, stiffness, focal adhesion and metabolism were altered in HF SAN fibroblasts compared to non-HF SAN. Conclusions: This study revealed increased SAN-specific fibrosis with presence of myofibroblasts, CILP1 and periostin-positive interstitial fibrosis only in HF vs non-HF human hearts. Comprehensive proteo-transcriptomic profiles of SAN fibroblasts identified upregulation of genes and proteins promoting stiffer SAN ECM in HF hearts. Fibroblast-specific profiles generated by our proteo-transcriptomic analyses of the human SAN, provide a comprehensive framework for future studies to investigate the role of SAN-specific fibrosis in cardiac rhythm regulation and arrhythmias.


1996 ◽  
Vol 271 (1) ◽  
pp. G75-G85 ◽  
Author(s):  
A. Yanaka ◽  
H. Muto ◽  
H. Fukutomi ◽  
S. Ito ◽  
W. Silen

The role of transforming growth factor-beta (TGF-beta) in restitution was examined in intact sheets of injured guinea pig gastric mucosa in which the epithelial cell-collagen interaction can be quantitatively evaluated. The luminal surface of intact sheets of in vitro guinea pig gastric mucosa was injured by exposure to 1.25 mol/l NaCl for 10 min. Restitution was evaluated by measurement of transmucosal electrical resistance and [3H]mannitol flux before and after injury. Recovery of electrical resistance and [3H]mannitol flux was retarded by inhibition of endogenous TGF-beta with either aprotinin or anti-TGF-beta antibody; effects were restored by human recombinant TGF-beta1. During inhibition of endogenous TGF-beta, type IV collagen accelerated the recovery. Inhibition of reconstruction of the basement membrane by simultaneous addition of cis-4-OH-L-proline and anti-type IV collagen completely abolished the enhancement of the recovery by TGF-beta 1. These results suggest that endogenous TGF-beta is required for restitution to occur in guinea pig gastric mucosa and that type IV collagen plays an important role in TGF-beta-abetted restitution.


Sign in / Sign up

Export Citation Format

Share Document