scholarly journals Celastrol-Induced Suppression of the MiR-21/ERK Signalling Pathway Attenuates Cardiac Fibrosis and Dysfunction

2016 ◽  
Vol 38 (5) ◽  
pp. 1928-1938 ◽  
Author(s):  
Mian Cheng ◽  
Gang Wu ◽  
Yue Song ◽  
Lin Wang ◽  
Ling Tu ◽  
...  

Backgroud: Myocardial fibrosis results in myocardial remodelling and dysfunction. Celastrol, a traditional oriental medicine, has been suggested to have cardioprotective effects. However, its underlying mechanism is unknown. This study investigated the ability of celastrol to prevent cardiac fibrosis and dysfunction and explored the underlying mechanisms. Methods: Animal and cell models of cardiac fibrosis were used in this study. Myocardial fibrosis was induced by transverse aortic constriction (TAC) in mice. Cardiac hypertrophy and fibrosis were evaluated based on histological and biochemical measurements. Cardiac function was evaluated by echocardiography. The levels of transforming growth factor beta 1 (TGF-β1), extracellular signal regulated kinases 1/2 (ERK1/2) signalling were measured using Western blotting, while the expression of miR-21was analyzed by real-time qRT-PCR in vitro and in vivo. In vitro studies, cultured cardiac fibroblasts (CFs) were treated with TGF-β1 and transfected with microRNA-21(miR21). Results: Celastrol treatment reduced the increased collagen deposition and down-regulated α-smooth muscle actin (α-SMA), atrial natriuretic peptide (ANP), brain natriuretic peptides (BNP), beta-myosin heavy chain (β-MHC), miR-21 and p-ERK/ERK. Cardiac dysfunction was significantly attenuated by celastrol treatment in the TAC mice model. Celastrol treatment reduced myocardial fibroblast viability and collagen content and down-regulated α-SMA in cultured CFs in vitro. Celastrol also inhibited the miR-21/ERK signalling pathway. Celastrol attenuated miR-21 up-regulation by TGF-β1 and decreased elevated p-ERK/ERK levels in CFs transfected with miR-21. Conclusion: MiR-21/ERK signalling could be a potential therapeutic pathway for the prevention of myocardial fibrosis. Celastrol ameliorates myocardial fibrosis and cardiac dysfunction, these probably related to miR-21/ERK signaling pathways in vitro and in vivo.

2021 ◽  
Vol 12 ◽  
Author(s):  
Hong-Xia Yang ◽  
Jia-Huan Sun ◽  
Ting-Ting Yao ◽  
Yuan Li ◽  
Geng-Rui Xu ◽  
...  

Myocardial fibrosis is closely related to high morbidity and mortality. In Inner Mongolia, Gentianella amarella subsp. acuta (Michx.) J.M.Gillett (G. acuta) is a kind of tea used to prevent cardiovascular diseases. Bellidifolin (BEL) is an active xanthone molecule from G. acuta that protects against myocardial damage. However, the effects and mechanisms of BEL on myocardial fibrosis have not been reported. In vivo, BEL dampened isoprenaline (ISO)-induced cardiac structure disturbance and collagen deposition. In vitro, BEL inhibited transforming growth factor (TGF)-β1-induced cardiac fibroblast (CF) proliferation. In vivo and in vitro, BEL decreased the expression of α-smooth muscle actin (α-SMA), collagen Ⅰ and Ⅲ, and inhibited TGF-β1/Smads signaling. Additionally, BEL impeded p38 activation and NR4A1 (an endogenous inhibitor for pro-fibrogenic activities of TGF-β1) phosphorylation and inactivation in vitro. In CFs, inhibition of p38 by SB203580 inhibited the phosphorylation of NR4A1 and did not limit Smad3 phosphorylation, and blocking TGF-β signaling by LY2157299 and SB203580 could decrease the expression of α-SMA, collagen I and III. Overall, both cell and animal studies provide a potential role for BEL against myocardial fibrosis by inhibiting the proliferation and phenotypic transformation of CFs. These inhibitory effects might be related to regulating TGF-β1/Smads pathway and p38 signaling and preventing NR4A1 cytoplasmic localization.


Cancers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 260 ◽  
Author(s):  
Qing Zhang ◽  
Xiaonan Hou ◽  
Bradley Evans ◽  
Jamison VanBlaricom ◽  
Saravut Weroha ◽  
...  

Transforming growth factor beta (TGF-β) signaling has pleiotropic functions regulating cancer initiation, development, and metastasis, and also plays important roles in the interaction between stromal and cancer cells, making the pathway a potential therapeutic target. LY2157299 monohydrate (LY), an inhibitor of TGF-β receptor I (TGFBRI), was examined for its ability to inhibit ovarian cancer (OC) growth both in high-grade serous ovarian cancer (HGSOC) cell lines and xenograft models. Immunohistochemistry, qRT-PCR, and Western blot were performed to study the effect of LY treatment on expression of cancer- and fibroblast-derived genes. Results showed that exposure to TGF-β1 induced phosphorylation of SMAD2 and SMAD3 in all tested OC cell lines, but this induction was suppressed by pretreatment with LY. LY alone inhibited the proliferation, migration, and invasion of HGSOC cells in vitro. TGF-β1-induced fibroblast activation was blocked by LY. LY also delayed tumor growth and suppressed ascites formation in vivo. In addition, independent of tumor inhibition, LY reduces ascites formation in vivo. Using OVCAR8 xenograft specimens we confirmed the inhibitory effect of LY on TGF-β signaling and tumor stromal expression of collagen type XI chain 1 (COL11A1) and versican (VCAN). These observations suggest a role for anti-TGF-β signaling-directed therapy in ovarian cancer.


2017 ◽  
Vol 204 (3-4) ◽  
pp. 191-198 ◽  
Author(s):  
Gemma A. Figtree ◽  
Kristen J. Bubb ◽  
Owen Tang ◽  
Eddy Kizana ◽  
Carmine Gentile

Spheroid cultures are among the most explored cellular biomaterials used in cardiovascular research, due to their improved integration of biochemical and physiological features of the heart in a defined architectural three-dimensional microenvironment when compared to monolayer cultures. To further explore the potential use of spheroid cultures for research, we engineered a novel in vitro model of the heart with vascularized cardiac spheroids (VCSs), by coculturing cardiac myocytes, endothelial cells, and fibroblasts isolated from dissociated rat neonatal hearts (aged 1-3 days) in hanging drop cultures. To evaluate the validity of VCSs in recapitulating pathophysiological processes typical of the in vivo heart, such as cardiac fibrosis, we then treated VCSs with transforming growth factor beta 1 (TGFβ1), a known profibrotic agent. Our mRNA analysis demonstrated that TGFβ1-treated VCSs present elevated levels of expression of connective tissue growth factor, fibronectin, and TGFβ1 when compared to control cultures. We demonstrated a dramatic increase in collagen deposition following TGFβ1 treatment in VCSs in the PicroSirius Red-stained sections. Doxorubicin, a renowned cardiotoxic and profibrotic agent, triggered apoptosis and disrupted vascular networks in VCSs. Taken together, our findings demonstrate that VCSs are a valid model for the study of the mechanisms involved in cardiac fibrosis, with the potential to be used to investigate novel mechanisms and therapeutics for treating and preventing cardiac fibrosis in vitro.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xian Fan ◽  
Stephen T. Mills ◽  
Mevelyn J. Kaalla ◽  
Viranuj Sueblinvong

Abstract Exaggerated transforming growth factor-beta 1 (TGFβ1) expression worsens fibroproliferation following bleomycin-induced lung injury in alcohol-fed mice. MicroRNA (miR)-1946a is predicted to bind to the TGFβ1 3′ untranslated region (UTR), thereby inhibiting its transcription. We hypothesize that alcohol suppresses miR-1946a and induces TGFβ1. Primary murine lung fibroblasts (PLFs) were cultured ± alcohol, miR-1946a mimic or inhibitor, and TGFβ1 signaling inhibitors. miR-1946a was analyzed after alcohol treatment in vitro and in vivo. TGFβ1 expression and TGFβ1 3′UTR-luciferase activity was quantified. We showed that alcohol suppressed miR-1946a in the alcohol-fed mouse lungs and PLFs. MiR-1946a inhibitor increased TGFβ1 expression in the fibroblast. MiR-1946a mimic treatment suppressed TGFβ1 gene expression and TGFβ1 3′UTR activity. Overexpression of miR1946a inhibited alcohol-induced TGFβ1 gene and protein expression as well as alcohol-induced TGFβ1 and α-smooth muscle actin (SMA) protein expression in PLFs. In conclusion, miR-1946a modulates TGFβ1 expression through direct interaction with TGFβ1 3′UTR. These findings identify a novel mechanism by which alcohol induces TGFβ1 in the lung.


Blood ◽  
2006 ◽  
Vol 107 (4) ◽  
pp. 1445-1453 ◽  
Author(s):  
Leonhard X. Heinz ◽  
Barbara Platzer ◽  
Peter M. Reisner ◽  
Almut Jörgl ◽  
Sabine Taschner ◽  
...  

Langerhans cells (LCs) are highly abundant dendritic cells (DCs) in epidermal and mucosal tissues. The transcription factors PU.1 and Id2 have been implicated as positive regulators of LC development from hematopoietic progenitor cells. LC differentiation from progenitors is absolutely dependent on transforming growth factor beta 1 (TGF-β1) in vitro as well as in vivo; however, downstream mechanisms are poorly defined. We found that both PU.1 and Id2 are induced by TGF-β1 in human CD34+ monocyte/LC (M/LC) progenitor cells, and that neither ectopic PU.1 or Id2 alone, nor both together, could replace TGF-β1 in its instructive function on LC commitment. However, both factors critically contributed to LC differentiation by acting at 2 distinct intersection points. Ectopic PU.1 strongly enhanced TGF-β1-dependent LC development. Additionally, Notch-induced generation of interstitial-type DCs was associated with PU.1 up-regulation. Thus, PU.1 is generally increased during myeloid DC development. Ectopic Id2 inhibits the acquisition of early monocytic characteristics by cells generated in the absence of TGF-β1 and also inhibits monocyte induction by alternative stimuli. Since TGF-β1 represses a default monocyte pathway of common progenitor cells, PU.1 and Id2 seem to modulate lineage options of M/LC precursors, downstream of TGF-β1.


2021 ◽  
Vol 22 (18) ◽  
pp. 9944
Author(s):  
Yongwoon Lim ◽  
Anna Jeong ◽  
Duk-Hwa Kwon ◽  
Yeong-Un Lee ◽  
Young-Kook Kim ◽  
...  

Various heart diseases cause cardiac remodeling, which in turn leads to ineffective contraction. Although it is an adaptive response to injury, cardiac fibrosis contributes to this remodeling, for which the reactivation of quiescent myofibroblasts is a key feature. In the present study, we investigated the role of the p300/CBP-associated factor (PCAF), a histone acetyltransferase, in the activation of cardiac fibroblasts. An intraperitoneal (i.p.) injection of a high dose (160 mg/kg) of isoproterenol (ISP) induced cardiac fibrosis and reduced the amount of the PCAF in cardiac fibroblasts in the mouse heart. However, the PCAF activity was significantly increased in cardiac fibroblasts, but not in cardiomyocytes, obtained from ISP-administered mice. An in vitro study using human cardiac fibroblast cells recapitulated the in vivo results; an treatment with transforming growth factor-β1 (TGF-β1) reduced the PCAF, whereas it activated the PCAF in the fibroblasts. PCAF siRNA attenuated the TGF-β1-induced increase in and translocation of fibrosis marker proteins. PCAF siRNA blocked TGF-β1-mediated gel contraction and cell migration. The PCAF directly interacted with and acetylated mothers against decapentaplegic homolog 2 (SMAD2). PCAF siRNA prevented TGF-β1-induced phosphorylation and the nuclear localization of SMAD2. These results suggest that the increase in PCAF activity during cardiac fibrosis may participate in SMAD2 acetylation and thereby in its activation.


Author(s):  
Priyanka Grover ◽  
Sritama Nath ◽  
Mukulika Bose ◽  
Alexa J. Sanders ◽  
Cory Brouwer ◽  
...  

AbstractPancreatic ductal adenocarcinoma (PDA) is one of the most lethal human cancers. Transforming Growth Factor Beta (TGF-β) is a cytokine that switches from a tumor-suppressor to a tumor promoter throughout tumor development, by a yet unknown mechanism. Tumor associated MUC1 (tMUC1) is aberrantly glycosylated and overexpressed in >80% of PDAs and is associated with poor prognosis. The cytoplasmic tail of MUC1 (MUC1-CT) interacts with other oncogenic proteins promoting tumor progression and metastasis. We hypothesize that tMUC1 levels regulate TGF-β functions in PDA in vitro and in vivo. We report that high-tMUC1 expression positively correlates to TGF-βRII and negatively to TGF-βRI receptors. In response to TGF-β1, high tMUC1 expressing PDA cells undergo c-Src phosphorylation, and activation of the Erk/MAPK pathway; while low tMUC1 expressing cells activate the Smad2/3 pathway, enhancing cell death. Correspondingly, mice bearing tMUC1-high tumors responded to TGF-β1 neutralizing antibody in vivo showing significantly retarded tumor growth. Analysis of clinical data from TCGA revealed significant alterations in gene-gene correlations in the TGF-β pathway in tMUC1 high versus tMUC1 low samples. This study deepens our understanding of tMUC1-regulated TGF-β’s paradoxical function in PDA and establishes tMUC1 as a potential biomarker to predict response to TGF-β-targeted therapies.


Biomolecules ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 819
Author(s):  
Garam Choi ◽  
Hyeongjin Na ◽  
Da-Sol Kuen ◽  
Byung-Seok Kim ◽  
Yeonseok Chung

Transforming growth factor beta 1 (TGF-β1) is an immunosuppresive cytokine that plays an essential role in immune homeostasis. It is well known that regulatory T (Treg) cells express TGF-β1; however, the role of autocrine TGF-β1 in the development, function, and stability of Treg cells remains poorly understood. We found that Treg cell-derived TGF-β1 was not required for the development of thymic Treg cells in mice, but played a role in the expression of latency-associated peptide and optimal suppression of naïve T cell proliferation in vitro. Moreover, the frequency of Treg cells was significantly reduced in the mesenteric lymph nodes of the Treg cell-specific TGF-β1-deficient mice, which was associated with increased frequency of IFN-γ-producers among Treg cells. TGF-β1-deficient Treg cells were more prone to express IFN-γ than TGF-β1-sufficient Treg cells in a dendritic cell-mediated stimulation in vitro as well as in an adoptive transfer study in vivo. Mechanistically, TGF-β1-deficient Treg cells expressed higher levels of Il12rb2 and were more sensitive to IL-12-induced conversion into IFN-γ-producing Treg cells or IFN-γ-producing exTreg cells than TGF-β1-sufficient Treg cells. Our findings demonstrate that autocrine TGF-β1 plays a critical role in the optimal suppressive activity and stability of Treg cells by downregulating IL-12R on Treg cells.


2020 ◽  
Author(s):  
Er Nie ◽  
Xin Jin ◽  
Faan Miao ◽  
Tianfu Yu ◽  
Tongle Zhi ◽  
...  

Abstract Background Our previous studies have indicated that miR-198 reduces cellular methylguanine DNA methyltransferase (MGMT) levels to enhance temozolomide sensitivity. Transforming growth factor beta 1 (TGF-β1) switches off miR-198 expression by repressing K-homology splicing regulatory protein (KSRP) expression in epidermal keratinocytes. However, the underlying role of TGF-β1 in temozolomide resistance has remained unknown. Methods The distribution of KSRP was detected by western blotting and immunofluorescence. Microarray analysis was used to compare the levels of long noncoding RNAs (lncRNAs) between TGF-β1–treated and untreated cells. RNA immunoprecipitation was performed to verify the relationship between RNAs and KSRP. Flow cytometry and orthotopic and subcutaneous xenograft tumor models were used to determine the function of TGF-β1 in temozolomide resistance. Results Overexpression of TGF-β1 contributed to temozolomide resistance in MGMT promoter hypomethylated glioblastoma cells in vitro and in vivo. TGF-β1 treatment reduced cellular MGMT levels through suppressing the expression of miR-198. However, TGF-β1 upregulation did not affect KSRP expression in glioma cells. We identified and characterized 2 lncRNAs (H19 and HOXD-AS2) that were upregulated by TGF-β1 through Smad signaling. H19 and HOXD-AS2 exhibited competitive binding to KSRP and prevented KSRP from binding to primary miR-198, thus decreasing miR-198 expression. HOXD-AS2 or H19 upregulation strongly promoted temozolomide resistance and MGMT expression. Moreover, KSRP depletion abrogated the effects of TGF-β1 and lncRNAs on miR-198 and MGMT. Finally, we found that patients with low levels of TGF-β1 or lncRNA expression benefited from temozolomide therapy. Conclusions Our results reveal an underlying mechanism by which TGF-β1 confers temozolomide resistance. Furthermore, our findings suggest that a novel combination of temozolomide with a TGF-β inhibitor may serve as an effective therapy for glioblastomas.


Sign in / Sign up

Export Citation Format

Share Document