scholarly journals 6-Gingerol Alleviates Neonatal Hypoxic-Ischemic Cerebral and White Matter Injury and Contributes to Functional Recovery

2021 ◽  
Vol 12 ◽  
Author(s):  
Man Zhao ◽  
Yuan Yao ◽  
Jingyi Du ◽  
Liang Kong ◽  
Tiantian Zhao ◽  
...  

Hypoxic-ischemic encephalopathy (HIE) is one main cause of neonatal death and disability, causing substantial injury to white and gray matter, which can lead to severe neurobehavioral dysfunction, including intellectual disability and dyskinesia. Inflammation, nerve cell death, and white matter injury are important factors in the pathological process of HIE. 6-Gingerol is a ginger extract, which reduces inflammatory response and cell death. However, the role of 6-Gingerol in neonatal hypoxic-ischemic brain injury (HIBI) remains unknown. In this study, we constructed a mouse HIBI model and analyzed the protective effect of 6-Gingerol on HIBI by using behavioral tests, histological staining, qPCR and western blot. Here, we found that 6-Gingerol treatment could alleviate HIBI and improve short-term reflex performance, which is closely related to cell death and neuroinflammation. Additionally, 6-Gingerol reduced neuronal apoptosis, pro-inflammatory factor release, as well as microglial activation. Furthermore, 6-Gingerol significantly improved motor disability, which is associated with white matter damage. Thus, our results showed that 6-Gingerol could reduce the loss of myelin sheaths, alleviate cell death of oligodendrocytes, and stimulate the maturation of oligodendrocytes. In terms of mechanism, we found that 6-Gingerol decreased histone H3K27me3 levels, activated AKT pathway and inhibited the activation of ERK and NF-κB pathway at 3 days post-HIBI. Taken together, our data clearly indicate that 6-Gingerol plays a neuroprotective role against HIBI by epigenetic modification and regulation of AKT, ERK, and NF-κB pathways, inhibiting inflammatory responses and reducing cell death.

2000 ◽  
Vol 84 (2) ◽  
pp. 1116-1119 ◽  
Author(s):  
Shuxin Li ◽  
Qiubo Jiang ◽  
Peter K. Stys

Spinal cord injury is a devastating condition in which most of the clinical disability results from dysfunction of white matter tracts. Excessive cellular Ca2+ accumulation is a common phenomenon after anoxia/ischemia or mechanical trauma to white matter, leading to irreversible injury because of overactivation of multiple Ca2+-dependent biochemical pathways. In the present study, we examined the role of Na+-Ca2+ exchange, a ubiquitous Ca2+ transport mechanism, in anoxic and traumatic injury to rat spinal dorsal columns in vitro. Excised tissue was maintained in a recording chamber at 37°C and injured by exposure to an anoxic atmosphere for 60 min or locally compressed with a force of 2 g for 15 s. Mean compound action potential amplitude recovered to ≈25% of control after anoxia and to ≈30% after trauma. Inhibitors of Na+-Ca2+ exchange (50 μM bepridil or 10 μM KB-R7943) improved functional recovery to ≈60% after anoxia and ≈70% after traumatic compression. These inhibitors also prevented the increase in calpain-mediated spectrin breakdown products induced by anoxia. We conclude that, at physiological temperature, reverse Na+-Ca2+exchange plays an important role in cellular Ca2+ overload and irreversible damage after anoxic and traumatic injury to dorsal column white matter tracts.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1545
Author(s):  
Narek Manukjan ◽  
Zubair Ahmed ◽  
Daniel Fulton ◽  
W. Matthijs Blankesteijn ◽  
Sébastien Foulquier

Key pathological features of cerebral small vessel disease (cSVD) include impairment of the blood brain barrier (BBB) and the progression of white matter lesions (WMLs) amongst other structural lesions, leading to the clinical manifestations of cSVD. The function of endothelial cells (ECs) is of major importance to maintain a proper BBB. ECs interact with several cell types to provide structural and functional support to the brain. Oligodendrocytes (OLs) myelinate axons in the central nervous system and are crucial in sustaining the integrity of white matter. The interplay between ECs and OLs and their precursor cells (OPCs) has received limited attention yet seems of relevance for the study of BBB dysfunction and white matter injury in cSVD. Emerging evidence shows a crosstalk between ECs and OPCs/OLs, mediated by signaling through the Wingless and Int-1 (WNT)/β-catenin pathway. As the latter is involved in EC function (e.g., angiogenesis) and oligodendrogenesis, we reviewed the role of WNT/β-catenin signaling for both cell types and performed a systematic search to identify studies describing a WNT-mediated interplay between ECs and OPCs/OLs. Dysregulation of this interaction may limit remyelination of WMLs and render the BBB leaky, thereby initiating a vicious neuroinflammatory cycle. A better understanding of the role of this signaling pathway in EC–OL crosstalk is essential in understanding cSVD development.


2001 ◽  
Vol 23 (3) ◽  
pp. 209-212 ◽  
Author(s):  
Gorm Greisen ◽  
Klaus Børch

2003 ◽  
Vol 285 (1) ◽  
pp. L1-L17 ◽  
Author(s):  
V. E. Kagan ◽  
G. G. Borisenko ◽  
B. F. Serinkan ◽  
Y. Y. Tyurina ◽  
V. A. Tyurin ◽  
...  

Programmed cell death (apoptosis) functions as a mechanism to eliminate unwanted or irreparably damaged cells ultimately leading to their orderly phagocytosis in the absence of calamitous inflammatory responses. Recent studies have demonstrated that the generation of free radical intermediates and subsequent oxidative stress are implicated as part of the apoptotic execution process. Oxidative stress may simply be an unavoidable yet trivial byproduct of the apoptotic machinery; alternatively, intermediates or products of oxidative stress may act as essential signals for the execution of the apoptotic program. This review is focused on the specific role of oxidative stress in apoptotic signaling, which is realized via phosphatidylserine-dependent pathways leading to recognition of apoptotic cells and their effective clearance. In particular, the mechanisms involved in selective phosphatidylserine oxidation in the plasma membrane during apoptosis and its association with disturbances of phospholipid asymmetry leading to phosphatidylserine externalization and recognition by macrophage receptors are at the center of our discussion. The putative importance of this oxidative phosphatidylserine signaling in lung physiology and disease are also discussed.


Author(s):  
Qian Li ◽  
Nengxian Shi ◽  
Chen Cai ◽  
Mingming Zhang ◽  
Jing He ◽  
...  

Pyroptosis is a recently discovered aspartic aspart-specific cysteine protease (Caspase-1/4/5/11) dependent mode of gene-regulated cell death cell death, which is represented by the rupture of cell membrane perforations and the production of proinflammatory mediaters like interleukin-18(IL-18) and interleukin-1β (IL-1β). Mitochondria also play an important role in apoptotic cell death. When it comes to apoptosis of mitochondrion, mitochondrial outer membrane permeabilization (MOMP) is commonly known to cause cell death. As a downstream pathological process of apoptotic signaling, MOMP participates in the leakage of cytochrome-c from mitochondrion to the cytosol and subsequently activate caspase proteases. Hence, targeting MOMP for the sake of manipulating cell death presents potential therapeutic effects among various types of diseases, such as autoimmune disorders, neurodegenerative diseases, and cancer. In this review, we highlights the roles and significance of mitochondria in pyroptosis to provide unexplored strategies that target the mitochondria to regulate cell death for clinical benefits.


Author(s):  
Di Zhan ◽  
Cai Zhang ◽  
Wenjun Long ◽  
Lan Wei ◽  
Shengjuan Jin ◽  
...  

Abstract Background White matter injury (WMI) induced by intrauterine inflammation can cause adverse neurological outcomes. Fibrinogen-like protein 2 (FGL2)/fibroleukin is an important trigger of inflammatory responses and is involved in some cerebral diseases. However, the role of FGL2 in intrauterine inflammation-induced WMI remains unclear. Methods Lipopolysaccharide (LPS) was intraperitoneally injected into wild-type and FGL2 knockout mice to induce intrauterine inflammation. Body weight and brain weight of offspring were monitored. Major basic protein (MBP) expression was evaluated to demonstrate the myelination of offspring. To investigate the regulatory mechanism of FGL2, cytokine expression, microglial polarization, and the activation of mitogen-activated protein kinase (MAPK) signaling pathway in the offspring were analyzed. Results Upon LPS exposure, FGL2 knockout offspring showed a significant increase in body weight loss. MBP reduction induced by LPS was prevented in FGL2 knockout offspring. Expression levels of proinflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α, and M1 marker CD86 were suppressed, while the expression levels of anti-inflammatory cytokines IL-10 and M2 marker CD206 were increased. FGL2 deficiency significantly inhibited the phosphorylation of p38MAPK and c-Jun N-terminal kinase (JNK) protein. Conclusions FGL2 deficiency can ameliorate WMI induced by intrauterine inflammation, reducing inflammatory cascade and improving hypomyelination, through the regulation of microglial polarization and MAPK signaling pathways. Impact Intrauterine inflammation induces WMI leading to severe neurological sequelae. FGL2 plays an important role in the progression of WMI induced by intrauterine inflammation. FGL2 deficiency can protect against WMI by inhibiting p38 MAPK and JNK phosphorylation, regulating microglia polarization, and reducing inflammation response. FGL2 could be a novel molecular target for protecting against WMI induced by intrauterine inflammation.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Marta Boccazzi ◽  
Juliette Van Steenwinckel ◽  
Anne-Laure Schang ◽  
Valérie Faivre ◽  
Tifenn Le Charpentier ◽  
...  

AbstractA leading cause of preterm birth is the exposure to systemic inflammation (maternal/fetal infection), which leads to neuroinflammation and white matter injury (WMI). A wide range of cytokines and chemokines are expressed and upregulated in oligodendrocytes (OLs) in response to inflammation and numerous reports show that OLs express several receptors for immune related molecules, which enable them to sense inflammation and to react. However, the role of OL immune response in WMI is unclear. Here, we focus our study on toll-like receptor-3 (TLR3) that is activated by double-strand RNA (dsRNA) and promotes neuroinflammation. Despite its importance, its expression and role in OLs remain unclear. We used an in vivo mouse model, which mimics inflammation-mediated WMI of preterm born infants consisting of intraperitoneal injection of IL-1β from P1 to P5. In the IL-1β-treated animals, we observed the upregulation of Tlr3, IL-1β, IFN-β, Ccl2, and Cxcl10 in both PDGFRα+ and O4+ sorted cells. This upregulation was higher in O4+ immature OLs (immOLs) as compared to PDGFRα+ OL precursor cells (OPCs), suggesting a different sensitivity to neuroinflammation. These observations were confirmed in OL primary cultures: cells treated with TLR3 agonist Poly(I:C) during differentiation showed a stronger upregulation of Ccl2 and Cxcl10 compared to cells treated during proliferation and led to decreased expression of myelin genes. Finally, OLs were able to modulate microglia phenotype and function depending on their maturation state as assessed by qPCR using validated markers for immunomodulatory, proinflammatory, and anti-inflammatory phenotypes and by phagocytosis and morphological analysis. These results show that during inflammation the response of OLs can play an autonomous role in blocking their own differentiation: in addition, the immune activation of OLs may play an important role in shaping the response of microglia during inflammation.


Author(s):  
Tianjing Liu ◽  
Haifeng Zong ◽  
Xiaoyu Chen ◽  
Sihang Li ◽  
Ziyun Liu ◽  
...  

Abstract Background Dramatic intestinal epithelial cell death leading to barrier dysfunction is one of the mechanism of neonatal necrotizing enterocolitis (NEC), in which Toll-like receptor 4 (TLR4) plays a pivotal role. This study explored the role of necroptosis, a drastic way of cell death in NEC. Methods The expression of necroptotic proteins was tested in NEC intestinal tissue and compared with controls. NEC was induced in neonatal wild-type mice and a necroptosis inhibitor was given to investigate whether NEC could be relieved. The general condition, macroscopic scoring, and histological evaluations were performed. The expression of tight junction proteins, inflammatory cytokines, and necroptosis-related proteins was measured, and barrier function was examined. Then, NEC was induced in TLR4-knockout pups to confirm the role of TLR4 in necroptosis. Results Necroptotic proteins were significantly upregulated in both NEC patient and animal models, together with the expression of TLR4. NEC could be relieved and inflammatory infiltration was decreased by necrostatin-1s. TLR4-knockout mice showed milder tissue degradation and less necroptosis after NEC induction. Conclusions Necroptosis is an essential pathological process of NEC. TLR4 may be one stimulator of necroptosis in NEC. Inhibiting the intestinal cell necroptosis might be a useful strategy in the treatment of NEC. Impact Necroptosis is a key pathological process in NEC, which appears to involve TLR4. Anti-necroptosis treatment is a promising strategy that could significantly relieve the symptoms of NEC.


Sign in / Sign up

Export Citation Format

Share Document