scholarly journals Anti-Photoaging and Anti-Inflammatory Effects of Ginsenoside Rk3 During Exposure to UV Irradiation

2021 ◽  
Vol 12 ◽  
Author(s):  
Shichao Wan ◽  
Yannan Liu ◽  
Jingjing Shi ◽  
Daidi Fan ◽  
Binglin Li

Ginseng is a widely cultivated perennial plant in China and Korea. Ginsenoside Rk3 is one of the major active components of ginseng and is a promising candidate to regulate skin pigments and exert anti-photoaging effects on skin physiology. Ginsenoside Rk3 was mixed with a cream (G-Rk3 cream) and smeared on the skin of mice. Then, the mice were exposed to ultraviolet (UV) A (340 nm and 40 W) and UVB (313 nm and 40 W) radiation. Special attention was given to the anti-photoaging and anti-inflammatory effects of ginsenoside Rk3 on the mouse skin. Macroscopic evaluation indicated that the mouse dorsal skin looked smooth and plump even under UV irradiation for 12 weeks. Pathological analysis indicated that there was no obvious photoaging or inflammation in the mouse skin that was treated with the G-Rk3 cream. More healthy, intact, and neat collagen fibers were observed in mice treated with the G-Rk3 cream than in untreated mice. Further analysis proved that ginsenoside Rk3 could inhibit the decrease in water and hydroxyproline levels in skin tissues and the loss of superoxide dismutase and glutathione peroxidase activities in the blood. Moreover, ginsenoside Rk3 slowed or halted increases in malondialdehyde, matrix metalloproteinase (MMP)-1, and MMP-3 levels in the blood and levels of interleukin 1, interleukin 6, and tumor necrosis factor α in skin tissues. In conclusion, ginsenoside Rk3 plays a significant role in inhibiting photoaging and inflammation to protect skin health.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2015 ◽  
Vol 21 (5) ◽  
pp. 273-278 ◽  
Author(s):  
Grażyna Chłoń-Rzepa ◽  
Agnieszka W. Jankowska ◽  
Małgorzata Zygmunt ◽  
Krzysztof Pociecha ◽  
Elżbieta Wyska

AbstractA series of new 8-alkoxy-1,3-dimethyl-2,6-dioxopurin-7-yl-substituted acetohydrazides and butanehydrazides 6–12 was synthesized and evaluated for the analgesic activity in two in vivo models: the writhing syndrome and the hot-plate tests. Among the investigated derivatives, compounds with N′-arylidenehydrazide moiety 9–12 show analgesic activity significantly higher than that of acetylsalicylic acid, which may indicate the importance of this structural element for analgesic properties. The lack of the activity in the hot-plate test may suggest that the analgesic activity of the newly synthesized compounds is mediated by a peripheral mechanism. The selected compounds 7 and 12 inhibit tumor necrosis factor α production in a rat model of lipopolysaccharide-induced endotoxemia, similarly to theophylline, which may confirm their anti-inflammatory properties.


2002 ◽  
Vol 126 (4) ◽  
pp. 417-422 ◽  
Author(s):  
Sertac Yetiser ◽  
Bulent Satar ◽  
Atilla Gumusgun ◽  
Faruk Unal ◽  
Yalcin Ozkaptan

OBJECTIVE: Based on interleukin (IL)-1β and tumor necrosis factor (TNF)-α levels in effusions, our goals were to specify either recurrent or persistent otitis media with effusion (OME) is a mid stage in the development of chronic disease and to identify the factors that have an influence on cytokine levels. STUDY DESIGN: Samples from groups with recurrent (n = 15) and persistent (n = 39) OME were essayed for IL-1 β and TNF-α. Children were also grouped with respect to age, sex, quality of effusion, and the presence of pharyngeal adenoid tissue. SETTING: Tertiary referral center. RESULTS: In recurrent and persistent OME groups, IL-1β was higher than TNF-α ( P < 0.01). IL-β was higher in recurrent OME than in persistent OME ( P < 0.05). CONCLUSION: Recurrent OME seems to be closer to the chronic stage of the disease relative to persistent OME in terms of higher IL-1 β levels. Each exacerbation of acute disease in recurrent otitis media is likely to be mediated by IL-1 β. SIGNIFICANCE: We were able to clarify that recurrent OME is a stage that occurs before chronic OME. Therefore, the prevention of acute attacks in recurrent disease would also impede long-term damage to the middle ear.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Małgorzata Chmielewska-Krzesińska ◽  
Krzysztof Wąsowicz

Abstract Introduction Ozone is not harmful itself; however, it directly oxidises biomolecules and produces radical-dependent cytotoxicity. Exposure to ozone is by inhalation and therefore the lungs develop the main anti-inflammatory response, while ozone has an indirect impact on the other organs. This study investigated the local and systemic effects of the ozone-associated inflammatory response. Material and Methods Three groups each of 5 Wistar Han rats aged 6 months were exposed for 2h to airborne ozone at 0.5 ppm and a fourth identical group were unexposed controls. Sacrifice was at 3h after exposure for control rats and one experimental group and at 24 h and 48 h for the others. Lung and liver samples were evaluated for changes in expression of transforming growth factor beta 1, anti-inflammatory interleukin 10, pro-inflammatory tumour necrosis factor alpha and interleukin 1 beta and two nuclear factor kappa-light-chain-enhancer of B cells subunit genes. Total RNA was isolated from the samples in spin columns and cDNA was synthesised in an RT-PCR. Expression levels were compared to those of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and analysed statistically. Results All variables changed non-linearly over time comparing experimental groups to the control. Conspicuous expression changes in the subunit genes and cytokines were observed in both evaluated organs. Conclusion Locally and systemically, inflammation responses to ozone inhalation include regulation of certain genes’ expression. The mechanisms are unalike in lungs and liver but ozone exerts a similar effect in both organs. A broader range of variables influential on ozone response should be studied in the future.


Sign in / Sign up

Export Citation Format

Share Document