scholarly journals Identification of the Antithrombotic Mechanism of Leonurine in Adrenalin Hydrochloride-Induced Thrombosis in Zebrafish via Regulating Oxidative Stress and Coagulation Cascade

2021 ◽  
Vol 12 ◽  
Author(s):  
Li Liao ◽  
Mengting Zhou ◽  
Jing Wang ◽  
Xinyan Xue ◽  
Ying Deng ◽  
...  

Thrombosis is a general pathological phenomenon during severe disturbances to homeostasis, which plays an essential role in cardiovascular and cerebrovascular diseases. Leonurine (LEO), isolated from Leonurus japonicus Houtt, showes a crucial role in anticoagulation and vasodilatation. However, the properties and therapeutic mechanisms of this effect have not yet been systematically elucidated. Therefore, the antithrombotic effect of LEO was investigated in this study. Hematoxylin-Eosin staining was used to detect the thrombosis of zebrafish tail. Fluorescence probe was used to detect the reactive oxygen species. The biochemical indexes related to oxidative stress (lactate dehydrogenase, malondialdehyde, superoxide dismutase and glutathione) and vasodilator factor (endothelin-1 and nitric oxide) were analyzed by specific commercial assay kits. Besides, we detected the expression of related genes (fga, fgb, fgg, pkcα, pkcβ, vwf, f2) and proteins (PI3K, phospho-PI3K, Akt, phospho-Akt, ERK, phospho-ERK FIB) related to the anticoagulation and fibrinolytic system by quantitative reverse transcription and western blot. Beyond that, metabolomic analyses were carried out to identify the expressions of metabolites associated with the anti-thrombosis mechanism of LEO. Our in vivo experimental results showed that LEO could improve the oxidative stress injury, abnormal platelet aggregation and coagulation dysfunction induced by adrenalin hydrochloride. Moreover, LEO restored the modulation of amino acids and inositol metabolites which are reported to alleviate the thrombus formation. Collectively, LEO attenuates adrenalin hydrochloride-induced thrombosis partly via modulating oxidative stress, coagulation cascade and platelet activation and amino acid and inositol metabolites.

2015 ◽  
Vol 35 (04) ◽  
pp. 338-350 ◽  
Author(s):  
L. Labberton ◽  
E. Kenne ◽  
T. Renné

SummaryBlood coagulation is essential for hemostasis, however excessive coagulation can lead to thrombosis. Factor XII starts the intrinsic coagulation pathway and contact-induced factor XII activation provides the mechanistic basis for the diagnostic aPTT clotting assay. Despite its function for fibrin formation in test tubes, patients and animals lacking factor XII have a completely normal hemostasis. The lack of a bleeding tendency observed in factor XII deficiency states is in sharp contrast to deficiencies of other components of the coagulation cascade and factor XII has been considered to have no function for coagulation in vivo. Recently, experimental animal models showed that factor XII is activated by an inorganic polymer, polyphosphate, which is released from procoagulant platelets and that polyphosphate-driven factor XII activation has an essential role in pathologic thrombus formation. Cumulatively, the data suggest to target polyphosphate, factor XII, or its activated form factor XIIa for anticoagulation. As the factor XII pathway specifically contributes to thrombosis but not to hemostasis, interference with this pathway provides a unique opportunity for safe anticoagulation that is not associated with excess bleeding.The review summarizes current knowledge on factor XII functions, activators and inhibitors.


Author(s):  
Dina Vara ◽  
Reiner K. Mailer ◽  
Anuradha Tarafdar ◽  
Nina Wolska ◽  
Marco Heestermans ◽  
...  

Objective: Using 3KO (triple NOX [NADPH oxidase] knockout) mice (ie, NOX1 −/− /NOX2 −/− /NOX4 −/− ), we aimed to clarify the role of this family of enzymes in the regulation of platelets in vitro and hemostasis in vivo. Approach and Results: 3KO mice displayed significantly reduced platelet superoxide radical generation, which was associated with impaired platelet aggregation, adhesion, and thrombus formation in response to the key agonists collagen and thrombin. A comparison with single-gene knockouts suggested that the phenotype of 3KO platelets is the combination of the effects of the genetic deletion of NOX1 and NOX2, while NOX4 does not show any significant function in platelet regulation. 3KO platelets displayed significantly higher levels of cGMP—a negative platelet regulator that activates PKG (protein kinase G). The inhibition of PKG substantially but only partially rescued the defective phenotype of 3KO platelets, which are responsive to both collagen and thrombin in the presence of the PKG inhibitors KT5823 or Rp-8-pCPT-cGMPs, but not in the presence of the NOS (NO synthase) inhibitor L-NG-monomethyl arginine. In vivo, triple NOX deficiency protected against ferric chloride–driven carotid artery thrombosis and experimental pulmonary embolism, while hemostasis tested in a tail-tip transection assay was not affected. Procoagulatory activity of platelets (ie, phosphatidylserine surface exposure) and the coagulation cascade in platelet-free plasma were normal. Conclusions: This study indicates that inhibiting NOXs has strong antithrombotic effects partially caused by increased intracellular cGMP but spares hemostasis. NOXs are, therefore, pharmacotherapeutic targets to develop new antithrombotic drugs without bleeding side effects.


2017 ◽  
Vol 2017 ◽  
pp. 1-17 ◽  
Author(s):  
Peng Wang ◽  
Qian Luo ◽  
Hui Qiao ◽  
Hui Ding ◽  
Yonggang Cao ◽  
...  

Chronic alcohol consumption causes hippocampal neuronal impairment, which is associated with oxidative stress and apoptosis. Carvacrol is a major monoterpenic phenol found in essential oils from the family Labiatae and has antioxidative stress and antiapoptosis actions. However, the protective effects of carvacrol in ethanol-induced hippocampal neuronal impairment have not been fully understood. We explored the neuroprotective effects of carvacrol in vivo and in vitro. Male C57BL/6 mice were exposed to 35% ethanol for 4 weeks to establish ethanol model in vivo, and hippocampal neuron injury was simulated by 200 mM ethanol in vitro. Morris water maze test was performed to evaluate the cognitive dysfunction. The oxidative stress injury of hippocampal neurons was evaluated by measuring the levels of oxidative stress biomarkers. Histopathological examinations and western blot were performed to evaluate the apoptosis of neurons. The results showed that carvacrol attenuates the cognitive dysfunction, oxidative stress, and apoptosis of the mice treated with ethanol and decreases hippocampal neurons apoptosis induced by ethanol in vitro. In addition, western blot analysis revealed that carvacrol modulates the protein expression of Bcl-2, Bax, caspase-3, and p-ERK, without influence of p-JNK and p-p38. Our results suggest that carvacrol alleviates ethanol-mediated hippocampal neuronal impairment by antioxidative and antiapoptotic effects.


2003 ◽  
Vol 285 (2) ◽  
pp. L283-L292 ◽  
Author(s):  
Melpo Christofidou-Solomidou ◽  
Arnaud Scherpereel ◽  
Rainer Wiewrodt ◽  
Kimmie Ng ◽  
Thomas Sweitzer ◽  
...  

Targeted delivery of drugs to vascular endothelium promises more effective and specific therapies in many disease conditions, including acute lung injury (ALI). This study evaluates the therapeutic effect of drug targeting to PECAM (platelet/endothelial cell adhesion molecule-1) in vivo in the context of pulmonary oxidative stress. Endothelial injury by reactive oxygen species (e.g., H2O2) is involved in many disease conditions, including ALI/acute respiratory distress syndrome and ischemia-reperfusion. To optimize delivery of antioxidant therapeutics, we conjugated catalase with PECAM antibodies and tested properties of anti-PECAM/catalase conjugates in cell culture and mice. Anti-PECAM/catalase, but not an IgG/catalase counterpart, bound specifically to PECAM-expressing cells, augmented their H2O2-degrading capacity, and protected them against H2O2 toxicity. Anti-PECAM/catalase, but not IgG/catalase, rapidly accumulated in the lungs after intravenous injection in mice, where it was confined to the pulmonary endothelium. To test its protective effect, we employed a murine model of oxidative lung injury induced by glucose oxidase coupled with thrombomodulin antibody (anti-TM/GOX). After intravenous injection in mice, anti-TM/GOX binds to pulmonary endothelium and produces H2O2, which causes lung injury and 100% lethality within 7 h. Coinjection of anti-PECAM/catalase protected against anti-TM/GOX-induced pulmonary oxidative stress, injury, and lethality, whereas polyethylene glycol catalase or IgG/catalase conjugates afforded only marginal protective effects. This result validates vascular immunotargeting as a prospective strategy for therapeutic interventions aimed at immediate protective effects, e.g., for augmentation of antioxidant defense in the pulmonary endothelium and treatment of ALI.


Blood ◽  
2012 ◽  
Vol 120 (10) ◽  
pp. 2133-2143 ◽  
Author(s):  
Roxane Darbousset ◽  
Grace M. Thomas ◽  
Soraya Mezouar ◽  
Corinne Frère ◽  
Rénaté Bonier ◽  
...  

AbstractFor a long time, blood coagulation and innate immunity have been viewed as interrelated responses. Recently, the presence of leukocytes at the sites of vessel injury has been described. Here we analyzed interaction of neutrophils, monocytes, and platelets in thrombus formation after a laser-induced injury in vivo. Neutrophils immediately adhered to injured vessels, preceding platelets, by binding to the activated endothelium via leukocyte function antigen-1–ICAM-1 interactions. Monocytes rolled on a thrombus 3 to 5 minutes postinjury. The kinetics of thrombus formation and fibrin generation were drastically reduced in low tissue factor (TF) mice whereas the absence of factor XII had no effect. In vitro, TF was detected in neutrophils. In vivo, the inhibition of neutrophil binding to the vessel wall reduced the presence of TF and diminished the generation of fibrin and platelet accumulation. Injection of wild-type neutrophils into low TF mice partially restored the activation of the blood coagulation cascade and accumulation of platelets. Our results show that the interaction of neutrophils with endothelial cells is a critical step preceding platelet accumulation for initiating arterial thrombosis in injured vessels. Targeting neutrophils interacting with endothelial cells may constitute an efficient strategy to reduce thrombosis.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Min Tang ◽  
Lei Zhang ◽  
Zheng Zhu ◽  
Ran Li ◽  
Shangqian Wang ◽  
...  

Background. Di-N-butylphthalate (DBP) is a kind of unique endocrine toxicity linked to hormonal disruptions that affects the male reproductive system and has given rise to more and more attention. However, the mechanism of DBP-induced testicular injury remains unclear. Here, the objective of this study was to investigate the potential molecular mechanism of miR-506-3p in DBP-induced rat testicular oxidative stress injury via ANXA5 (Annexin A5)/Nrf2/HO-1 signaling pathway. Methods. In vivo, a total of 40 adolescent male rats were treated from 2 weeks with 800 mg/kg/day of DBP in 1 mL/kg corn oil administered daily by oral gavage. Among them, some rats were also injected subcutaneously with 2 nmol agomir-506-3p and/or 10 nmol recombinant rat ANXA5. The pathomorphological changes of testicular tissue were assessed by histological examination, and the antioxidant factors were evaluated. Subsequently, ANXA5, Nrf2, and its dependent antioxidant enzymes, such as HO-1, NQO1, and GST, were detected by Western blotting or immunohistochemical staining. In vitro, TM3 cells (Leydig cells) were used to detect the cell activity by CCK-8 and the transfection in the DBP-treated group. Results. Differentially expressed miRNAs between the DBP-treated and normal rats were analyzed, and qRT-PCR showed miR-506-3p was highly expressed in testicular tissues of the DBP-treated rats. DBP-treated rats presented severe inflammatory infiltration, increased abnormal germ cells, and missed cell layers frequently existed in seminiferous tubules, resulted in oxidative stress and decreased testicular function. Meanwhile, upregulation of miR-506-3p aggravated the above changes. In addition, miR-506-3p directly bound to ANXA5, and overexpression of miR-506-3p could reduce the ANXA5 expression and also decrease the protein levels of Nrf2/HO-1 signaling pathway. Additionally, we found that recombinant rat ANXA5 reversed the DBP-treated testicular oxidative stress promoting injury of miR-506-3p in rats. In vivo results were reproduced in in vitro experiments. Conclusions. This study provided evidence that miR-506-3p could aggravate the DBP-treated testicular oxidative stress injury in vivo and in vitro by inhibiting ANXA5 expression and downregulating Nrf2/HO-1 signaling pathway, which might provide novel understanding in DBP-induced testicular injury therapy.


2002 ◽  
Vol 4 (7) ◽  
pp. 1-10 ◽  
Author(s):  
Peter F. Bodary ◽  
Kevin J. Wickenheiser ◽  
Daniel T. Eitzman

The fate of a forming thrombus is determined through the delicate balance between the coagulation cascade, favouring clot formation, and the fibrinolytic system, favouring clot lysis. These processes occur simultaneously, and enhancement of fibrinolysis has been shown to reduce occlusive thrombus formation in animal models. This review examines the roles of the major fibrinolytic factors involved in clot lysis. The regulation of plasmin activity by plasminogen activators, α-2-antiplasmin, plasminogen activator inhibitor 1, and thrombin-activatable fibrinolysis inhibitor, and their effects on thrombus formation in vivo are discussed. Since alterations in fibrinolytic capacity appear to affect thrombus formation in animal models, there is considerable interest in the pharmacological manipulation of fibrinolysis.


1995 ◽  
Vol 74 (02) ◽  
pp. 655-659 ◽  
Author(s):  
Jean Marie Stassen ◽  
Anne-Marie Lambeir ◽  
Ingrid Vreys ◽  
Hans Deckmyn ◽  
Gaston Matthyssens ◽  
...  

SummaryUpon vascular damage platelet activation and blood coagulation are initiated. Interference at the initial level of the activation of the coagulation cascade can result in effective inhibition of thrombus formation. The in vivo antithrombotic properties of a series of bovine pancreatic trypsin inhibitor mutants (BPTI, aprotinin) 4C2, 7L22, 5L15, 5L15-PEG, 6L15 and 5L84, as described in the accompanying paper, with a combined inhibitory activity on factor Xa, factor VIIa-tissue factor complex, factor XIa and plasma kallikrein were compared to rTAP, r-hirudin, heparin and enoxaparin in a platelet rich thrombosis model in hamsters.Platelet dependent thrombus deposition was quantified by dedicated image analysis after transillumination of the femoral vein to which a standardised vascular trauma was applied. After increasing intravenous bolus injections all tested agents, except for aprotinin, induced a dose dependent decrease of thrombus formation and a concomitant prolongation of the aPTT. From the linear correlation between these two parameters it was found that 5 out of the 6 tested aprotinin analogues, rTAP and r-hirudin completely inhibited thrombus formation at a therapeutical (2- to 3-fold) aPTT prolongation while 4C2, heparin and enoxaparin only inhibited thrombus formation for 40 to 50 percent at a 2-fold aPTT prolongation. Based on the calculated IC50 values for thrombus formation rTAP was found to be the most active compound in this model.It is concluded that acceptable interference at the initial level of the blood coagulation, e. g. within a therapeutical aPTT prolongation, can significantly inhibit platelet deposition at a site of vascular injury.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhang Yifan ◽  
Ning Benxiang ◽  
Xu Zheng ◽  
Xu Luwei ◽  
Zhou Liuhua ◽  
...  

Objective. To investigate the role of inflammatory reactions and oxidative stress injury in the mechanisms of ceftriaxone calcium crystal-induced acute kidney injury (AKI) both in vivo and in vitro. Methods. Male Sprague Dawley rats were randomly divided into five groups of ten each according to different concentrations of ceftriaxone and calcium. Based on the levels of serum creatinine (Scr) and blood urea nitrogen (BUN), the AKI group was chosen for the subsequent experiments. Kidney histological examination and immunohistochemistry were performed. The expression of NLRP3 and IL-1β protein and the concentrations of oxidative stress markers such as ROS, MDA, and H2O2 in kidney tissues were estimated. In parallel, HK-2 human renal proximal tubule cells were exposed to ceftriaxone calcium crystals. The mRNA expression levels of NLRP3 and IL-1β and the concentrations of oxidative stress markers were evaluated. Finally, cell viability and rat survival were also assessed. Results. The results showed that significantly increased Scr and BUN levels, consistent with morphological changes and kidney stones, were found in the rats that received the highest concentration of ceftriaxone (1000 mg/kg) combined with calcium (800 mg/kg). The activation of the NLRP3 inflammasome axis and the marked elevation of MDA, H2O2, and ROS levels were observed both in vivo and in vitro. High expression of Nrf2, HO-1, and NQO1 was also documented. In addition, cell apoptosis and rat mortality were promoted by ceftriaxone calcium crystals. Conclusions. Notably, we found that ceftriaxone-induced urolithiasis was associated with a high risk of AKI and NLRP3-mediated inflammasome and oxidative stress injury were of major importance in the pathogenesis.


2019 ◽  
Vol 2019 ◽  
pp. 1-18 ◽  
Author(s):  
Jing Zeng ◽  
Long Zhu ◽  
Jing Liu ◽  
Tao Zhu ◽  
Zhaohui Xie ◽  
...  

Previous studies have shown that metformin not only is a hypoglycemic agent but also has neuroprotective effects. However, the mechanism of action of metformin in ischemic stroke is unclear. Oxidative stress is an important factor in the pathogenesis of cerebral ischemia-reperfusion injury. It has been reported that metformin is associated with stroke risk in the clinical population. This study is aimed at investigating the effect and mechanism of metformin in an experimental model of oxidative stress induced by ischemia/reperfusion (I/R) in vivo and oxygen glucose deprivation/reperfusion (OGD/R) in vitro. Metformin (100, 200, and 300 mg/kg) was administered intraperitoneally immediately after induction of cerebral ischemia. The indicators of oxidative stress selected were antioxidant enzyme activities of catalase, malondialdehyde (MDA), nitric oxide (NO), superoxide dismutase (SOD), and glutathione peroxidation enzyme (GSHPx). First, we demonstrated that metformin can significantly alleviate acute and chronic cerebral I/R injury and it has a strong regulatory effect on stroke-induced oxidative stress. It can reduce the elevated activities of MDA and NO and increase the levels of GSHPx and SOD in the cerebrum of mice and N2a cells exposed to I/R. Furthermore, real-time PCR and western blot were used to detect the expression of long noncoding RNA H19 (lncRNA-H19), microRNA-148a-3p (miR-148a-3p), and Rho-associated protein kinase 2 (Rock2). The direct interaction of lncRNA-H19, miR-148a-3p, and Rock2 was tested using a dual luciferase reporter assay. lncRNA-H19 altered OGD/R-induced oxidative stress by modulating miR-148a-3p to increase Rock2 expression. The expression of lncRNA-H19 and Rock2 could be downregulated with metformin in vivo and in vitro. In conclusion, our study confirmed that metformin exerts neuroprotective effects by regulating ischemic stroke-induced oxidative stress injury via the lncRNA-H19/miR-148a-3p/Rock2 axis. These results provide new evidence that metformin may represent a potential treatment for stroke-related brain injury.


Sign in / Sign up

Export Citation Format

Share Document