scholarly journals Sempervirine Inhibits Proliferation and Promotes Apoptosis by Regulating Wnt/β-Catenin Pathway in Human Hepatocellular Carcinoma

2021 ◽  
Vol 12 ◽  
Author(s):  
Rongcai Yue ◽  
Haiping Liu ◽  
Yaxin Huang ◽  
Jing Wang ◽  
Dongmei Shi ◽  
...  

Gelsemium elegans (G. elegans) Benth., recognized as a toxic plant, has been used as traditional Chinese medicine for the treatment of neuropathic pain and cancer for many years. In the present study, we aim to obtain the anti-tumor effects of alkaloids of G. elegans and their active components in hepatocellular carcinoma (HCC) and the potential mechanism was also further investigated. We demonstrated that sempervirine induced HCC cells apoptosis and the apoptosis was associated with cell cycle arrest during the G1 phase, up-regulation of p53 and down-regulation of cyclin D1, cyclin B1 and CDK2. Furthermore, sempervirine inhibited HCC tumor growth and enhances the anti-tumor effect of sorafenib in vivo. In addition, inactivation of Wnt/β-catenin pathway was found to be involved in sempervirine-induced HCC proliferation. The present study demonstrated that alkaloids of G. elegans were a valuable source of active compounds with anti-tumor activity. Our findings justified that the active compound sempervirine inhibited proliferation and induced apoptosis in HCC by regulating Wnt/β-catenin pathway.

2019 ◽  
Vol 41 (3) ◽  
pp. 345-357 ◽  
Author(s):  
Wenjing Zai ◽  
Wei Chen ◽  
Yuxuan Han ◽  
Zimei Wu ◽  
Jiajun Fan ◽  
...  

Abstract Hepatocellular carcinoma (HCC), one of the most lethal malignancies worldwide, has limited efficient therapeutic options. Here, we first demonstrated that simultaneously targeting poly (ADP-ribose) polymerase (PARP) and autophagy could evoke striking synergistic lethality in HCC cells. Specifically, we found that the PARP inhibitor Niraparib induced cytotoxicity accompanied by significant autophagy formation and autophagic flux in HCC cells. Further experiments showed that Niraparib induced suppression of the Akt/mTOR pathway and activation of the Erk1/2 cascade, two typical signaling pathways related to autophagy. In addition, the accumulation of reactive oxygen species was triggered, which was involved in Niraparib-induced autophagy. Blocking autophagy by chloroquine (CQ) in combination with Niraparib further enhanced cytotoxicity, induced apoptosis and inhibited colony formation in HCC cells. Synergistic inhibition was also observed in Huh7 xenografts in vivo. Mechanistically, we showed that autophagy inhibition abrogated Niraparib-induced cell-cycle arrest and checkpoint activation. Cotreatment with CQ and Niraparib promoted the formation of γ-H2AX foci while inhibiting the recruitment of the homologous recombination repair protein RAD51 to double-strand break sites. Thus, the present study developed a novel promising strategy for the management of HCC in the clinic and highlighted a potential approach to expand the application of PARP inhibitors.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shanshan Wang ◽  
Rilu Feng ◽  
Ying Shi ◽  
Dexi Chen ◽  
Honglei Weng ◽  
...  

AbstractRetinoic acid and retinoid acid receptor (RA-RAR) signaling exhibits suppressive functions in the progression of hepatocellular carcinoma (HCC) through multiple mechanisms. However, whether RA-RAR signaling induces autophagy that contributes its anti-tumor activity in HCC remains elusive. In the current study, the effects of RA-RAR pathway on autophagy were investigated in two HCC cell lines: alpha-fetoprotein (AFP) positive PLC/PRF/5 and AFP negative HLE cells. Cell autophagy was analyzed with western blot for detection of LC3 conversion and p62/SQSTM1 degradation while autophagy flux was assayed using the mRFP-GFP-LC3 reporter. Cell apoptosis and viability were analyzed by caspase-3 activity, TdT-mediated dUTP nick end labeling (TUNEL) assay, and Cell Counting Kit (CCK)-8, respectively. Chromatin immunoprecipitation (ChIP) was employed to detect the binding of RAR onto the promoter of autophagy-relevant 7 (ATG7), and co-immunoprecipitation (CoIP) was used to analyze the interaction of AFP and RAR. The results showed that ATRA dosage and time-dependently induced high levels of cell autophagy in both the PLC/PRF/5 and HLE cells, which was accompanied with up-regulation of ATG7. ChIP assay showed that RAR was able to bind to its responsive elements on ATG7 promoter. Impairment of ATG7 induction or blockade of autophagy with chloroquine aggravated ATRA induced apoptosis of HCC cells. Furthermore, intracellular AFP was able to complex with RAR in PLC/PRF/5 cells. Knockdown of AFP in PLC/PRF/5 cells augmented the up-regulation of ATG7 by ATRA while overexpression of AFP in HLE cells attenuated ATRA induced ATG7 expression and autophagy. Thus, ATRA induced ATG7 and autophagy participated in its cytotoxicity on HCC cells and AFP interfere with the induction of ATG7 and autophagy through forming complex with RAR.


2019 ◽  
Vol 133 (2) ◽  
pp. 367-379 ◽  
Author(s):  
Jing Chen ◽  
Di Wu ◽  
Yue Zhang ◽  
Yong Yang ◽  
Yunfei Duan ◽  
...  

Abstract Long non-coding RNAs (lncRNAs) play important roles in a variety of tumours; however, their biological function and clinical significance in hepatocellular carcinoma (HCC) are still unclear. In the present study, the clinical significance, biological function and regulatory mechanisms of lncRNA DCST1-AS1 in HCC were investigated. Differential lncRNAs in HCC were identified based on The Cancer Genome Atlas (TCGA) database. The biological function and mechanism of DCST1-AS1 were studied in vitro and in vivo. LncRNA DCST1-AS1 was highly expressed in HCC tissues, and the high expression of DCST1-AS1 was significantly correlated with larger tumours and shorter survival time. Moreover, DCST1-AS1 knockout significantly inhibited proliferation, promoted apoptosis and cycle arrest of HCC cells, and inhibited tumour growth in vivo. According to functional analysis, DCST1-AS1 competitively bound miR-1254, thus blocking the silencing effect of miR-1254 on the target gene Fas apoptosis inhibitor 2 (FAIM2). A novel lncRNA DCST1-AS1 that functions as an oncogene in HCC was discovered. DCST1-AS1 up-regulates the expression of FAIM2 by up-regulating the expression of miR-1254, ultimately promoting the proliferation of HCC cells. This research provides new therapeutic targets for HCC.


2020 ◽  
Vol 48 (01) ◽  
pp. 161-182 ◽  
Author(s):  
Jihan Huang ◽  
Wei Guo ◽  
Fan Cheung ◽  
Hor-Yue Tan ◽  
Ning Wang ◽  
...  

Unlike Western medicines with single-target, the traditional Chinese medicines (TCM) always exhibit diverse curative effects against multiple diseases through its “multi-components” and “multi-targets” manifestations. However, discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM remain to be challenged. In the current study, we, for the first time, applied an integrated strategy by combining network pharmacology with experimental evaluation, for exploration and demonstration of the therapeutic potentials and the underlying possible mechanisms of a classic TCM formula, Huanglian Jiedu decoction (HLJDD). First, the herb–compound, compound–protein, protein–pathway, and gene–disease networks were constructed to predict the major therapeutic diseases of HLJDD and explore the underlying molecular mechanisms. Network pharmacology analysis showed the top one predicted disease of HLJDD treatment was cancer, especially hepatocellular carcinoma (HCC) and inflammation-related genes played an important role in the treatment of HLJDD on cancer. Next, based on the prediction by network pharmacology analysis, both in vitro HCC cell and in vivo orthotopic HCC implantation mouse models were established to validate the curative role of HLJDD. HLJDD exerted its antitumor activity on HCC in vitro, as demonstrated by impaired cell proliferation and colony formation abilities, induced apoptosis and cell cycle arrest, as well as inhibited migratory and invasive properties of HCC cells. The orthotopic HCC implantation mouse model further demonstrated the remarkable antitumour effects of HLJDD on HCC in vivo. In conclusion, our study demonstrated the effectiveness of integrating network pharmacology with experimental study for discovery and identification of the major therapeutic diseases and the underlying molecular mechanisms of TCM.


Cancers ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1193 ◽  
Author(s):  
Yeonhwa Song ◽  
Sanghwa Kim ◽  
Hyeryon Lee ◽  
Joo Hwan No ◽  
Hyung Chul Ryu ◽  
...  

Hepatocellular carcinoma (HCC) is a highly malignant human cancer that has increasing mortality rates worldwide. Because CD133+ cells control tumor maintenance and progression, compounds that target CD133+ cancer cells could be effective in combating HCC. We found that the administration of chromenopyrimidinone (CPO) significantly decreased spheroid formation and the number of CD133+ cells in mixed HCC cell populations. CPO not only significantly inhibited cell proliferation in HCC cells exhibiting different CD133 expression levels, but also effectively induced apoptosis and increased the expression of LC3-II in HCC cells. CPO also exhibits in vivo therapeutic efficiency in HCC. Specifically, CPO suppressed the expression of CD133 by altering the subcellular localization of CD133 from the membrane to lysosomes in CD133+ HCC cells. Moreover, CPO treatment induced point mutations in the ADRB1, APOB, EGR2, and UBE2C genes and inhibited the expression of these proteins in HCC and the expression of UBE2C is particularly controlled by CD133 expression among those four proteins in HCC. Our results suggested that CPO may suppress stemness and malignancies in vivo and in vitro by decreasing CD133 and UBE2C expression in CD133+ HCC. Our study provides evidence that CPO could act as a novel therapeutic agent for the effective treatment of CD133+ HCC.


2019 ◽  
Vol 17 (1) ◽  
Author(s):  
Sarita Saraswati ◽  
Abdulqader Alhaider ◽  
Abdelgalil Mohamed Abdelgadir ◽  
Pooja Tanwer ◽  
Hesham M. Korashy

Abstract Background Hepatocellular carcinoma (HCC) is the most common primary liver malignancy. Phloretin (PH) possesses anticancer, antitumor, and hepatoprotective effects, however, the effects and potential mechanisms of phloretin remain elusive. Methods Five HCC cells were tested in vitro for sensitivity to PH, Sorafenib (Sor) or both and the apoptosis, signal transduction and phosphatase activity were analyzed. To validate the role of SHP-1, we used PTP inhibitor III and SHP-1 siRNA. Further, we used purified SHP-1 proteins or HCC cells expressing deletion N-SH2 domain or D61A point mutants to study the PH efficacy on SHP-1. The `in vivo studies were conducted using HepG2 and SK-Hep1 and Sor resistant HepG2SR and Huh7SR xenografts. Molecular docking was done with Swiss dock and Auto Dock Vina. Results PH inhibited cell growth and induced apoptosis in all HCC cells by upregulating SHP-1 expression and downregulating STAT3 expression and further inhibited pAKT/pERK signaling. PH activated SHP-1 by disruption of autoinhibition of SHP-1, leading to reduced p-STAT3Tyr705 level. PH induced apoptosis in two Sor-resistant cell lines and overcome STAT3, AKT, MAPK and VEGFR2 dependent Sor resistance in HCCs. PH potently inhibited tumor growth in both Sor-sensitive and Sor-resistant xenografts in vivo by impairing angiogenesis, cell proliferation and inducing apoptosis via targeting the SHP-1/STAT3 signaling pathway. Conclusion Our data suggest that PH inhibits STAT3 activity in Sor-sensitive and -resistant HCCs via SHP-1–mediated inhibition of STAT3 and AKT/mTOR/JAK2/VEGFR2 pathway. Our results clearly indicate that PH may be a potent reagent for hepatocellular carcinoma and a noveltargeted therapy for further clinical investigations. Graphical abstract


2021 ◽  
Author(s):  
Yu Wang ◽  
Si-Zhe Yu ◽  
Shi-Rong Zhang ◽  
Jia Hou ◽  
Min Jiao ◽  
...  

Abstract Background: Sorafenib has been recognized as the standard therapy for advanced hepatocellular carcinoma (HCC). Besides, efficacy of sorafenib was unsatisfactory and vast patients are resistant to sorafenib. Thus, molecular mechanisms underlying regulation of sorafenib resistance and seeking potential strategy to improve its efficacy have attracted much attention. As a small-molecule inhibitor of IGF-1R, NT157 has potent antitumor activity against some human cancers. However, whether NT157 has potential anti-tumor effects and its molecular mechanisms in HCC remain poorly understood. Methods: We assessed the effects and explored the mechanism of NT157 and sorafenib as single agents or in combination with sorafenib in HCC cells and mouse model. Further, we further demonstrated that NT157 reversed resistance to sorafenib in HCC.Results: Here, we found NT157 inhibited HCC growth and induced apoptosis in vitro and in vivo. In terms of mechanism, NT157 phosphorylated IRS-1 through ERK-MAPK signaling to be degraded by the ubiquitin-proteasome pathway, lowered p-AKT to deactivate IGF-1R signaling to inhibit proliferation and induce apoptosis. Surprisingly, we further demonstrated that NT157 acted synergistically with sorafenib to inhibit proliferation and contributed to sensitize HCC cells to sorafenib by down-regulation of p-AKT. Conclusions: Overall, our findings provide a translational rationale for inhibition of IGF-1R and downstream signaling pathways by NT157 as a novel targeted therapy alone or combined with sorafenib in HCC.


2020 ◽  
Vol 40 (6) ◽  
Author(s):  
Jing Feng ◽  
Jian Guo ◽  
Pengyu Zhao ◽  
Jing Shen ◽  
Baofeng Chai ◽  
...  

Abstract Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related death worldwide. Recent studies showed that snRNPs were implicated in human cancer development. The role of SNRPA1, which is a member of U2 snRNPs, in HCC, remains undocumented. Here, we found that SNRPA1 was highly expressed in HCC tissue compared with normal adjacent liver tissues. Up-regulation of SNRPA1 was correlated with the clinical stage of HCC and the overall survival of HCC patients. In vitro and in vivo results showed that knockdown of SNPRA1 inhibited the cell proliferation, colony formation and xenografted tumorigenesis of HCC cells. Apoptosis was induced by SNPRA1 down-regulation. Mechanistically, SNPRA1 was stimulated by mTOR activation. In addition, whole-genome microarray analysis identified that 262 genes were up-regulated and 462 genes were down-regulated by SNPRA1 knockdown in HCC cells. qPCR analysis suggested that the fibroblast growth factor-2 (FGF2), Alpha-fetoprotein (AFP), β-catenin, Ki-67 and cyclin B1 were down-regulated and caspase 3, p53 as well as p21 were up-regulated after SNRPA1 knockdown. Taken together, our findings implicate that SNPRA1 functions as an oncogene in HCC.


Oncogenesis ◽  
2019 ◽  
Vol 8 (12) ◽  
Author(s):  
Yingchao Wang ◽  
Gaoxiong Wang ◽  
Xionghong Tan ◽  
Kun Ke ◽  
Bixing Zhao ◽  
...  

AbstractPoor prognosis of hepatocellular carcinoma (HCC) patients is frequently associated with rapid tumor growth, recurrence and drug resistance. MT1G is a low-molecular weight protein with high affinity for zinc ions. In the present study, we investigated the expression of MT1G, analyzed clinical significance of MT1G, and we observed the effects of MT1G overexpression on proliferation and apoptosis of HCC cell lines in vitro and in vivo. Our results revealed that MT1G was significantly downregulated in tumor tissues, and could inhibit the proliferation as well as enhance the apoptosis of HCC cells. The mechanism study suggested that MT1G increased the stability of p53 by inhibiting the expression of its ubiquitination factor, MDM2. Furthermore, MT1G also could enhance the transcriptional activity of p53 through direct interacting with p53 and providing appropriate zinc ions to p53. The modulation of MT1G on p53 resulted in upregulation of p21 and Bax, which leads cell cycle arrest and apoptosis, respectively. Our in vivo assay further confirmed that MT1G could suppress HCC tumor growth in nude mice. Overall, this is the first report on the interaction between MT1G and p53, and adequately uncover a new HCC suppressor which might have therapeutic values by diminishing the aggressiveness of HCC cells.


2019 ◽  
Vol 20 (22) ◽  
pp. 5526 ◽  
Author(s):  
Maheshkumar Kannan ◽  
Sridharan Jayamohan ◽  
Rajesh Kannan Moorthy ◽  
Siva Chander Chabattula ◽  
Mathan Ganeshan ◽  
...  

Hepatocellular carcinoma (HCC) is the third leading malignancy worldwide, causing mortality in children and adults. AEG-1 is functioned as a scaffold protein for the proper assembly of RNA-induced silencing complex (RISC) to optimize or increase its activity. The increased activity of oncogenic miRNAs leads to the degradation of target tumor suppressor genes. miR-221 is an oncogenic miRNA, that plays a seminal role in carcinogenesis regulation of HCC. However, the molecular mechanism and biological functions of the miR-221/AEG-1 axis have not been investigated extensively in HCC. Here, the expression of miR-221/AEG-1 and their target/associate genes was analyzed by qRT-PCR and Western blot. The role of the miR-221/AEG-1 axis in HCC was evaluated by proliferation assay, migration assay, invasion assay, and flow cytometry analysis. The expression level of miR-221 decreased in AEG-1 siRNA transfected HCC cells. On the other hand, there were no significant expression changes of AEG-1 in miR-221 mimic and miR-221 inhibitor transfected HCC cells and inhibition of miR-221/AEG-1 axis decreased cell proliferation, invasion, migration, and angiogenesis and induced apoptosis, cell cycle arrest by upregulating p57, p53, PTEN, and RB and downregulating LSF, MMP9, OPN, Bcl-2, PI3K, AKT, and LC3A in HCC cells. Furthermore, these findings suggest that the miR-221/AEG-1 axis plays a seminal oncogenic role by modulating PTEN/PI3K/AKT signaling pathway in HCC. In conclusion, the miR-221/AEG-1 axis may serve as a potential target for therapeutics, diagnostics, and prognostics of HCC.


Sign in / Sign up

Export Citation Format

Share Document