scholarly journals Detecting Pathogen Exposure During the Non-symptomatic Incubation Period Using Physiological Data: Proof of Concept in Non-human Primates

2021 ◽  
Vol 12 ◽  
Author(s):  
Shakti Davis ◽  
Lauren Milechin ◽  
Tejash Patel ◽  
Mark Hernandez ◽  
Greg Ciccarelli ◽  
...  

Background and Objectives: Early warning of bacterial and viral infection, prior to the development of overt clinical symptoms, allows not only for improved patient care and outcomes but also enables faster implementation of public health measures (patient isolation and contact tracing). Our primary objectives in this effort are 3-fold. First, we seek to determine the upper limits of early warning detection through physiological measurements. Second, we investigate whether the detected physiological response is specific to the pathogen. Third, we explore the feasibility of extending early warning detection with wearable devices.Research Methods: For the first objective, we developed a supervised random forest algorithm to detect pathogen exposure in the asymptomatic period prior to overt symptoms (fever). We used high-resolution physiological telemetry data (aortic blood pressure, intrathoracic pressure, electrocardiograms, and core temperature) from non-human primate animal models exposed to two viral pathogens: Ebola and Marburg (N = 20). Second, to determine reusability across different pathogens, we evaluated our algorithm against three independent physiological datasets from non-human primate models (N = 13) exposed to three different pathogens: Lassa and Nipah viruses and Y. pestis. For the third objective, we evaluated performance degradation when the algorithm was restricted to features derived from electrocardiogram (ECG) waveforms to emulate data from a non-invasive wearable device.Results: First, our cross-validated random forest classifier provides a mean early warning of 51 ± 12 h, with an area under the receiver-operating characteristic curve (AUC) of 0.93 ± 0.01. Second, our algorithm achieved comparable performance when applied to datasets from different pathogen exposures – a mean early warning of 51 ± 14 h and AUC of 0.95 ± 0.01. Last, with a degraded feature set derived solely from ECG, we observed minimal degradation – a mean early warning of 46 ± 14 h and AUC of 0.91 ± 0.001.Conclusion: Under controlled experimental conditions, physiological measurements can provide over 2 days of early warning with high AUC. Deviations in physiological signals following exposure to a pathogen are due to the underlying host’s immunological response and are not specific to the pathogen. Pre-symptomatic detection is strong even when features are limited to ECG-derivatives, suggesting that this approach may translate to non-invasive wearable devices.

2017 ◽  
Author(s):  
Lauren Milechin ◽  
Shakti Davis ◽  
Tejash Patel ◽  
Mark Hernandez ◽  
Greg Ciccarelli ◽  
...  

AbstractEarly pathogen exposure detection allows better patient care and faster implementation of public health measures (patient isolation, contact tracing). Existing exposure detection most frequently relies on overt clinical symptoms, namely fever, during the infectious prodromal period. We have developed a robust machine learning based method to better detect asymptomatic states during the incubation period using subtle, sub-clinical physiological markers. Starting with high-resolution physiological waveform data from non-human primate studies of viral (Ebola, Marburg, Lassa, and Nipah viruses) and bacterial (Y. pestis) exposure, we processed the data to reduce short-term variability and normalize diurnal variations, then provided these to a supervised random forest classification algorithm and post-classifier declaration logic step to reduce false alarms. In most subjects detection is achieved well before the onset of fever; subject cross-validation across exposure studies (varying viruses, exposure routes, animal species, and target dose) lead to 51h mean early detection (at 0.93 area under the receiver-operating characteristic curve [AUCROC]). Evaluating the algorithm against entirely independent datasets for Lassa, Nipah, andY. pestisexposures un-used in algorithm training and development yields a mean 51h early warning time (at AUCROC=0.95). We discuss which physiological indicators are most informative for early detection and options for extending this capability to limited datasets such as those available from wearable, non-invasive, ECG-based sensors.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinlong Li ◽  
Xingyu Chen ◽  
Qixing Huang ◽  
Yang Wang ◽  
Yun Xie ◽  
...  

Abstract Increasing evidence indicates that miRNAs play a vital role in biological processes and are closely related to various human diseases. Research on miRNA-disease associations is helpful not only for disease prevention, diagnosis and treatment, but also for new drug identification and lead compound discovery. A novel sequence- and symptom-based random forest algorithm model (Seq-SymRF) was developed to identify potential associations between miRNA and disease. Features derived from sequence information and clinical symptoms were utilized to characterize miRNA and disease, respectively. Moreover, the clustering method by calculating the Euclidean distance was adopted to construct reliable negative samples. Based on the fivefold cross-validation, Seq-SymRF achieved the accuracy of 98.00%, specificity of 99.43%, sensitivity of 96.58%, precision of 99.40% and Matthews correlation coefficient of 0.9604, respectively. The areas under the receiver operating characteristic curve and precision recall curve were 0.9967 and 0.9975, respectively. Additionally, case studies were implemented with leukemia, breast neoplasms and hsa-mir-21. Most of the top-25 predicted disease-related miRNAs (19/25 for leukemia; 20/25 for breast neoplasms) and 15 of top-25 predicted miRNA-related diseases were verified by literature and dbDEMC database. It is anticipated that Seq-SymRF could be regarded as a powerful high-throughput virtual screening tool for drug research and development. All source codes can be downloaded from https://github.com/LeeKamlong/Seq-SymRF.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2556
Author(s):  
Liyang Wang ◽  
Yao Mu ◽  
Jing Zhao ◽  
Xiaoya Wang ◽  
Huilian Che

The clinical symptoms of prediabetes are mild and easy to overlook, but prediabetes may develop into diabetes if early intervention is not performed. In this study, a deep learning model—referred to as IGRNet—is developed to effectively detect and diagnose prediabetes in a non-invasive, real-time manner using a 12-lead electrocardiogram (ECG) lasting 5 s. After searching for an appropriate activation function, we compared two mainstream deep neural networks (AlexNet and GoogLeNet) and three traditional machine learning algorithms to verify the superiority of our method. The diagnostic accuracy of IGRNet is 0.781, and the area under the receiver operating characteristic curve (AUC) is 0.777 after testing on the independent test set including mixed group. Furthermore, the accuracy and AUC are 0.856 and 0.825, respectively, in the normal-weight-range test set. The experimental results indicate that IGRNet diagnoses prediabetes with high accuracy using ECGs, outperforming existing other machine learning methods; this suggests its potential for application in clinical practice as a non-invasive, prediabetes diagnosis technology.


Author(s):  
Guoxing Tang ◽  
Ying Luo ◽  
Feng Lu ◽  
Wei Li ◽  
Xiongcheng Liu ◽  
...  

BackgroundThe outbreak of coronavirus disease 2019 (COVID-19) has become a global public health concern. Many inpatients with COVID-19 have shown clinical symptoms related to sepsis, which will aggravate the deterioration of patients’ condition. We aim to diagnose Viral Sepsis Caused by SARS-CoV-2 by analyzing laboratory test data of patients with COVID-19 and establish an early predictive model for sepsis risk among patients with COVID-19.MethodsThis study retrospectively investigated laboratory test data of 2,453 patients with COVID-19 from electronic health records. Extreme gradient boosting (XGBoost) was employed to build four models with different feature subsets of a total of 69 collected indicators. Meanwhile, the explainable Shapley Additive ePlanation (SHAP) method was adopted to interpret predictive results and to analyze the feature importance of risk factors.FindingsThe model for classifying COVID-19 viral sepsis with seven coagulation function indicators achieved the area under the receiver operating characteristic curve (AUC) 0.9213 (95% CI, 89.94–94.31%), sensitivity 97.17% (95% CI, 94.97–98.46%), and specificity 82.05% (95% CI, 77.24–86.06%). The model for identifying COVID-19 coagulation disorders with eight features provided an average of 3.68 (±) 4.60 days in advance for early warning prediction with 0.9298 AUC (95% CI, 86.91–99.04%), 82.22% sensitivity (95% CI, 67.41–91.49%), and 84.00% specificity (95% CI, 63.08–94.75%).InterpretationWe found that an abnormality of the coagulation function was related to the occurrence of sepsis and the other routine laboratory test represented by inflammatory factors had a moderate predictive value on coagulopathy, which indicated that early warning of sepsis in COVID-19 patients could be achieved by our established model to improve the patient’s prognosis and to reduce mortality.


2019 ◽  
Author(s):  
Jinlong Li ◽  
Xingyu Chen ◽  
Qixing Huang ◽  
Yang Wang ◽  
Yun Xie ◽  
...  

Abstract Background: MicroRNA (MiRNA) plays a vital role in biological processes and closely relate with various human diseases. Research on the miRNA-disease associations contributes to the prevention, diagnosis and treatment of diseases, as well as the identification of new drugs and the discovery of lead compounds. Since traditional experiment methods are time-consuming and expensive, it is necessary to develop an efficient and accurate theoretical approach to identify potential miRNA-disease associations. Results: In this study, a sequence- and symptom-based random forest classifier model (Seq-SymRF) was constructed to identify the potential associations between miRNA and disease. Compared with existing methods, features derived from only sequence information were used to characterize miRNA. More importantly, clinical symptoms were utilized to represent disease. Moreover, the clustering method by calculating the Euclidean distance was implemented to construct the reliable negative sample. Based on the five-fold cross-validation, the model achieved the accuracy, specificity, sensitivity, precision and Matthews correlation coefficient of 98.00%, 99.43%, 96.58%, 99.40% and 0.9604, respectively. The areas under receiver operating characteristic curve and precision recall curve were 0.9967 and 0.9975, respectively. Additionally, case study was implemented with leukemia, breast neoplasms and hsa-mir-21. Most of top-25 predicted disease-related miRNAs (36/50 for leukemia; 33/50 for breast neoplasms) and 32 of top-50 predicted miRNA-related diseases were verified by literature and dbDEMC database. Conclusion: We proposed a new method, named Seq-SymRF, for predicting miRNA-disease associations, which could be regarded as a powerful high-throughput virtual screening tool for drug research and development.


2021 ◽  
pp. 1-12
Author(s):  
Xingchen Fan ◽  
Minmin Cao ◽  
Cheng Liu ◽  
Cheng Zhang ◽  
Chunyu Li ◽  
...  

BACKGROUND: MicroRNAs (miRNAs), with noticeable stability and unique expression pattern in plasma of patients with various diseases, are powerful non-invasive biomarkers for cancer detection including endometrial cancer (EC). OBJECTIVE: The objective of this study was to identify promising miRNA biomarkers in plasma to assist the clinical screening of EC. METHODS: A total of 93 EC and 79 normal control (NC) plasma samples were analyzed using Quantitative Real-time Polymerase Chain Reaction (qRT-PCR) in this four-stage experiment. The receiver operating characteristic curve (ROC) analysis was conducted to evaluate the diagnostic value. Additionally, the expression features of the identified miRNAs were further explored in tissues and plasma exosomes samples. RESULTS: The expression of miR-142-3p, miR-146a-5p, and miR-151a-5p was significantly overexpressed in the plasma of EC patients compared with NCs. Areas under the ROC curve of the 3-miRNA signature were 0.729, 0.751, and 0.789 for the training, testing, and external validation phases, respectively. The diagnostic performance of the identified signature proved to be stable in the three public datasets and superior to the other miRNA biomarkers in EC diagnosis. Moreover, the expression of miR-151a-5p was significantly elevated in EC plasma exosomes. CONCLUSIONS: A signature consisting of 3 plasma miRNAs was identified and showed potential for the non-invasive diagnosis of EC.


Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1345
Author(s):  
Mahathir Humaidi ◽  
Wei Ping Tien ◽  
Grace Yap ◽  
Choon Rong Chua ◽  
Lee Ching Ng

Dengue diagnosis is largely dependent on clinical symptoms and routinely confirmed with laboratory detection of dengue virus in patient serum samples collected via phlebotomy. This presents a challenge to patients not amenable to venipuncture. Non-invasive methods of dengue diagnosis have the potential to enhance the current dengue detection algorithm. In this study, samples from dengue infected patients were collected between January 2012 until September 2012 and September 2013 until December 2013 in two different setups. Panel A samples (blood, urine, and saliva) were collected daily when the 39 patients were hospitalised and during their follow-up visits while Panel B samples (saliva) were collected from 23 patients during the acute stage of dengue. Using DENV PCR on Panel A, from day 2 to day 4 post fever onset, serum showed the best overall positivity followed by saliva and urine (100%/82.1%/67.9%). From day 5 until day 10 post fever onset, serum and urine had similar positivity (67.4%/61.2%), followed by saliva (51.3%). Beyond day 10 post fever onset, DENV was undetectable in sera, but urine and saliva showed 56.8% and 28.6% positivity, respectively. DENV in urine was detectable up until 32 days post fever. Panel B results showed overall sensitivity of 32.4%/36% (RNA/NS1) for DENV detection in saliva. Our results suggest that the urine-based detection method is useful especially for late dengue detection, where DENV is undetected in sera but still detectable in urine. This provides a potential tool for the physician to pick up new cases in an area where there is ongoing dengue transmission and subsequently prompt for intensified vector control activities.


2021 ◽  
Vol 43 (2) ◽  
pp. 900-916
Author(s):  
Anna Zubrzycka ◽  
Monika Migdalska-Sęk ◽  
Sławomir Jędrzejczyk ◽  
Ewa Brzeziańska-Lasota

Endometriosis is a chronic gynecological disease defined by the presence of endometrial-like tissue found outside the uterus, most commonly in the peritoneal cavity. Endometriosis lesions are heterogenous but usually contain endometrial stromal cells and epithelial glands, immune cell infiltrates and are vascularized and innervated by nerves. The complex etiopathogenesis and heterogenity of the clinical symptoms, as well as the lack of a specific non-invasive diagnostic biomarkers, underline the need for more advanced diagnostic tools. Unfortunately, the contribution of environmental, hormonal and immunological factors in the disease etiology is insufficient, and the contribution of genetic/epigenetic factors is still fragmentary. Therefore, there is a need for more focused study on the molecular mechanisms of endometriosis and non-invasive diagnostic monitoring systems. MicroRNAs (miRNAs) demonstrate high stability and tissue specificity and play a significant role in modulating a range of molecular pathways, and hence may be suitable diagnostic biomarkers for the origin and development of endometriosis. Of these, the most frequently studied are those related to endometriosis, including those involved in epithelial–mesenchymal transition (EMT), whose expression is altered in plasma or endometriotic lesion biopsies; however, the results are ambiguous. Specific miRNAs expressed in endometriosis may serve as diagnostics markers with prognostic value, and they have been proposed as molecular targets for treatment. The aim of this review is to present selected miRNAs associated with EMT known to have experimentally confirmed significance, and discuss their utility as biomarkers in endometriosis.


2021 ◽  
Vol 49 (3) ◽  
pp. 030006052199398
Author(s):  
Jinwu Peng ◽  
Zhili Duan ◽  
Yamin Guo ◽  
Xiaona Li ◽  
Xiaoqin Luo ◽  
...  

Objectives Liver echinococcosis is a severe zoonotic disease caused by Echinococcus (tapeworm) infection, which is epidemic in the Qinghai region of China. Here, we aimed to explore biomarkers and establish a predictive model for the diagnosis of liver echinococcosis. Methods Microarray profiling followed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis was performed in liver tissue from patients with liver hydatid disease and from healthy controls from the Qinghai region of China. A protein–protein interaction (PPI) network and random forest model were established to identify potential biomarkers and predict the occurrence of liver echinococcosis, respectively. Results Microarray profiling identified 1152 differentially expressed genes (DEGs), including 936 upregulated genes and 216 downregulated genes. Several previously unreported biological processes and signaling pathways were identified. The FCGR2B and CTLA4 proteins were identified by the PPI networks and random forest model. The random forest model based on FCGR2B and CTLA4 reliably predicted the occurrence of liver hydatid disease, with an area under the receiver operator characteristic curve of 0.921. Conclusion Our findings give new insight into gene expression in patients with liver echinococcosis from the Qinghai region of China, improving our understanding of hepatic hydatid disease.


Sign in / Sign up

Export Citation Format

Share Document