scholarly journals Gestational Hypoxia and Blood-Brain Barrier Permeability: Early Origins of Cerebrovascular Dysfunction Induced by Epigenetic Mechanisms

2021 ◽  
Vol 12 ◽  
Author(s):  
Emilio A. Herrera ◽  
Alejandro González-Candia

Fetal chronic hypoxia leads to intrauterine growth restriction (IUGR), which is likely to reduce oxygen delivery to the brain and induce long-term neurological impairments. These indicate a modulatory role for oxygen in cerebrovascular development. During intrauterine hypoxia, the fetal circulation suffers marked adaptations in the fetal cardiac output to maintain oxygen and nutrient delivery to vital organs, known as the “brain-sparing phenotype.” This is a well-characterized response; however, little is known about the postnatal course and outcomes of this fetal cerebrovascular adaptation. In addition, several neurodevelopmental disorders have their origins during gestation. Still, few studies have focused on how intrauterine fetal hypoxia modulates the normal brain development of the blood-brain barrier (BBB) in the IUGR neonate. The BBB is a cellular structure formed by the neurovascular unit (NVU) and is organized by a monolayer of endothelial and mural cells. The BBB regulates the entry of plasma cells and molecules from the systemic circulation to the brain. A highly selective permeability system achieves this through integral membrane proteins in brain endothelial cells. BBB breakdown and dysfunction in cerebrovascular diseases lead to leakage of blood components into the brain parenchyma, contributing to neurological deficits. The fetal brain circulation is particularly susceptible in IUGR and is proposed to be one of the main pathological processes deriving BBB disruption. In the last decade, several epigenetic mechanisms activated by IU hypoxia have been proposed to regulate the postnatal BBB permeability. However, few mechanistic studies about this topic are available, and little evidence shows controversy. Therefore, in this mini-review, we analyze the BBB permeability-associated epigenetic mechanisms in the brain exposed to chronic intrauterine hypoxia.

2021 ◽  
Vol 11 ◽  
Author(s):  
Damir Janigro ◽  
Damian M. Bailey ◽  
Sylvain Lehmann ◽  
Jerome Badaut ◽  
Robin O'Flynn ◽  
...  

Within the neurovascular unit (NVU), the blood–brain barrier (BBB) operates as a key cerebrovascular interface, dynamically insulating the brain parenchyma from peripheral blood and compartments. Increased BBB permeability is clinically relevant for at least two reasons: it actively participates to the etiology of central nervous system (CNS) diseases, and it enables the diagnosis of neurological disorders based on the detection of CNS molecules in peripheral body fluids. In pathological conditions, a suite of glial, neuronal, and pericyte biomarkers can exit the brain reaching the peripheral blood and, after a process of filtration, may also appear in saliva or urine according to varying temporal trajectories. Here, we specifically examine the evidence in favor of or against the use of protein biomarkers of NVU damage and BBB permeability in traumatic head injury, including sport (sub)concussive impacts, seizure disorders, and neurodegenerative processes such as Alzheimer's disease. We further extend this analysis by focusing on the correlates of human extreme physiology applied to the NVU and its biomarkers. To this end, we report NVU changes after prolonged exercise, freediving, and gravitational stress, focusing on the presence of peripheral biomarkers in these conditions. The development of a biomarker toolkit will enable minimally invasive routines for the assessment of brain health in a broad spectrum of clinical, emergency, and sport settings.


2008 ◽  
Vol 19 (1) ◽  
pp. 83-92 ◽  
Author(s):  
Katarzyna Nierwińska ◽  
Elżbieta Malecka ◽  
Małgorzata Chalimoniuk ◽  
Aleksandra Żebrowska ◽  
Józef Langfort

Blood-Brain Barrier and Exercise – a Short ReviewBlood-brain barier (BBB) segregates central nervous system (CNS) from the circulating blood. BBB is formed by the brain capillary endothelial cells with complex tight junctions between them as well as by astrocytes and pericytes. BBB is responsible for transport of selected chemicals into and out of the CNS as well as for its protection from fluctuations in plasma composition following meals, during exercise and from circulating agents such as neurotransmitters, xenobiotics and other potentially harmful substances capable to disturb neural function. BBB may be compromised during CNS injury, infection, fever and in some nerodegenerative diseases. The increase of BBB permeability was observed also during exercise as documented by changes of plasma S-100 protein levels, used as a peripheral marker of BBB integrity. Marked change in BBB integrity during exercise may disturb normal brain function and contribute to the development of central fatigue. Moreover, serum S-100β may indicate level of injury in individuals suffering brain injuries during sports. There are also data suggesting that acute effect of physical exercise on serum S100β levels may not be related with CNS injury. Further studies to establish whether training and which type of it may modulate BBB permeability are needed.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi82-vi82 ◽  
Author(s):  
Ellina Schulz ◽  
Almuth F Kessler ◽  
Ellaine Salvador ◽  
Dominik Domröse ◽  
Malgorzata Burek ◽  
...  

Abstract OBJECTIVE For glioblastoma patients Tumor Treating Fields (TTFields) have been established as adjuvant therapy. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Therefore, the BBB may block delivery of drugs for treatment of brain tumors. Here, the influence of TTFields on BBB permeability was assessed in vivo. METHODS Rats were treated with 100 kHz TTFields for 72 h and thereupon i.v. injected with Evan’s Blue (EB) which directly binds to Albumin. To evaluate effects on BBB, EB was extracted after brain homogenization and quantified. In addition, cryosections of rat brains were prepared following TTFields application. The sections were stained for tight junction proteins Claudin-5 and Occludin and for immunoglobulin G (IgG) to assess vessel structure. Furthermore, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent was performed before and after TTFields application. RESULTS TTFields application significantly increased the EB accumulation in the rat brain. In TTFields-treated rats, the vessel structure became diffuse compared to control cryosections of rat brains; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue. Serial DCE-MRI demonstrated significantly increased accumulation of Gadolinium in the brain, observed directly after 72 h of TTFields application. The effect of TTFields on the BBB disappeared 96 h after end of treatment and no difference in contrast enhancement between controls and TTFields treated animals was detectable. CONCLUSION By altering BBB integrity and permeability, application of TTFields at 100 kHz may have the potential to deliver drugs to the brain, which are unable to cross the BBB. Utilizing TTFields to open the BBB and its subsequent recovery could be a clinical approach of drug delivery for treatment of brain tumors and other diseases of the central nervous system. These results will be further validated in clinical Trials.


2012 ◽  
Vol 32 (7) ◽  
pp. 1139-1151 ◽  
Author(s):  
Gary A Rosenberg

Disruption of the blood–brain barrier (BBB) has an important part in cellular damage in neurological diseases, including acute and chronic cerebral ischemia, brain trauma, multiple sclerosis, brain tumors, and brain infections. The neurovascular unit (NVU) forms the interface between the blood and brain tissues. During an injury, the cascade of molecular events ends in the final common pathway for BBB disruption by free radicals and proteases, which attack membranes and degrade the tight junction proteins in endothelial cells. Free radicals of oxygen and nitrogen and the proteases, matrix metalloproteinases and cyclooxgyenases, are important in the early and delayed BBB disruption as the neuroinflammatory response progresses. Opening of the BBB occurs in neurodegenerative diseases and contributes to the cognitive changes. In addition to the importance of the NVU in acute injury, angiogenesis contributes to the recovery process. The challenges to treatment of the brain diseases involve not only facilitating drug entry into the brain, but also understanding the timing of the molecular cascades to block the early NVU injury without interfering with recovery. This review will describe the molecular and cellular events associated with NVU disruption and potential strategies directed toward restoring its integrity.


1982 ◽  
Vol 57 (3) ◽  
pp. 394-398 ◽  
Author(s):  
Kazuo Yamada ◽  
Yukitaka Ushio ◽  
Toru Hayakawa ◽  
Amami Kato ◽  
Noriko Yamada ◽  
...  

✓ Quantitative autoradiographic technique was applied in measuring blood-brain barrier (BBB) permeability of autochthonous gliomas in rats. In small tumors (less than 2 mm in diameter), no increase in BBB permeability was noted. As the tumor grew and neovascularization occurred, BBB permeability increased in the center of the tumor, and it was suggested that the BBB was partly disrupted in the neovascularized vessels. In the fully grown tumors, BBB permeability was markedly increased in the viable part of the tumor to levels similar to the choroid plexus. Yet, the BBB was partly preserved at the periphery of the tumor and in the brain adjacent to the tumor. The heterogeneity of the BBB phenomenon according to the stage of tumor growth may be a major obstacle for uptake of chemotherapeutic drugs that do not cross the BBB easily.


1991 ◽  
Vol 11 (4) ◽  
pp. 638-643 ◽  
Author(s):  
Takehiko Baba ◽  
Keith L. Black ◽  
Kiyonobu Ikezaki ◽  
Kangnian Chen ◽  
Donald P. Becker

Intracarotid infusions of leukotriene C4 (LTC4) were used to open selectively the blood–brain barrier (BBB) in ischemic tissue after middle cerebral artery (MCA) occlusion in rats. BBB permeability was determined by quantitative autoradiography using [14C]aminoisobutyric acid. Seventy-two hours after MCA occlusion, LTC4 (4 μg total dose) infused into the carotid artery ipsilateral to the MCA occlusion selectively increased the unidirectional transfer constant for permeability K1 approximately threefold within core ischemic tissue and tissue adjacent to the ischemic core. No effect on BBB permeability was seen within nonischemic brain tissue or in ischemic tissue after only 24 h after MCA occlusion. γ-Glutamyl transpeptidase (γ-GTP) activity was decreased in capillaries in ischemic tissue at 48 and 72 h after infarction, compared to high γ-GTP in normal brain capillaries and moderate γ-GTP in capillaries in the ischemic tissue at 24 h after infarction. These findings suggest that normal brain capillaries resist the vasogenic effects of LTC4. In contrast, LTC4 increases permeability in capillaries of ischemic tissue, where γ-GTP is decreased. γ-Glutamyl transpeptidase, an enzyme that inactivates LTC4 to LTD4 and LTE4 to LTF4, may act as an “enzymatic barrier” in normal brain capillaries to leukotrienes.


2013 ◽  
Vol 33 (12) ◽  
pp. 1944-1954 ◽  
Author(s):  
Ngoc H On ◽  
Sanjot Savant ◽  
Myron Toews ◽  
Donald W Miller

The present study characterizes the effects of lysophosphatidic acid (LPA) on blood–brain barrier (BBB) permeability focusing specifically on the time of onset, duration, and magnitude of LPA-induced changes in cerebrovascular permeability in the mouse using both magnetic resonance imaging (MRI) and near infrared fluorescence imaging (NIFR). Furthermore, potential application of LPA for enhanced drug delivery to the brain was also examined by measuring the brain accumulation of radiolabeled methotrexate. Exposure of primary cultured brain microvessel endothelial cells (BMECs) to LPA produced concentration-dependent increases in permeability that were completely abolished by clostridium toxin B. Administration of LPA disrupted BBB integrity and enhanced the permeability of small molecular weight marker gadolinium diethylenetriaminepentaacetate (Gd-DTPA) contrast agent, the large molecular weight permeability marker, IRdye800cwPEG, and the P-glycoprotein efflux transporter probe, Rhodamine 800 (R800). The increase in BBB permeability occurred within 3 minutes after LPA injection and barrier integrity was restored within 20 minutes. A decreased response to LPA on large macromolecule BBB permeability was observed after repeated administration. The administration of LPA also resulted in 20-fold enhancement of radiolabeled methotrexate in the brain. These studies indicate that administration of LPA in combination with therapeutic agents may increase drug delivery to the brain.


2018 ◽  
Author(s):  
Matthew J. Stebbins ◽  
Benjamin D. Gastfriend ◽  
Scott G. Canfield ◽  
Ming-Song Lee ◽  
Drew Richards ◽  
...  

ABSTRACTBrain pericytes play an important role in the formation and maintenance of the neurovascular unit (NVU), and their dysfunction has been implicated in central nervous system (CNS) disorders. While human pluripotent stem cells (hPSCs) have been used to model other components of the NVU including brain microvascular endothelial cells (BMECs), astrocytes, and neurons, cells having brain pericyte-like phenotypes have not been described. In this study, we generated neural crest stem cells (NCSCs), the embryonic precursor to forebrain pericytes, from human pluripotent stem cells (hPSCs) and subsequently differentiated NCSCs to brain pericyte-like cells. The brain pericyte-like cells expressed marker profiles that closely resembled primary human brain pericytes, and they self-assembled with endothelial cells to support vascular tube formation. Importantly, the brain pericyte-like cells induced blood-brain barrier (BBB) properties in BMECs, including barrier enhancement and reduction of transcytosis. Finally, brain pericyte-like cells were incorporated with iPSC-derived BMECs, astrocytes, and neurons to form an isogenic human NVU model that should prove useful for the study of the BBB in CNS health, disease, and therapy.


Author(s):  
Rahimeh Bargi ◽  
Mahmoud Hosseini ◽  
Fereshteh Asgharzadeh ◽  
Majid Khazaei ◽  
Mohammad Naser Shafei ◽  
...  

Background: Blood-brain barrier (BBB), as well-known protection for the brain, plays an active role in normal homeostasis. It might be changed by a range of inflammatory mediators to have a role in sickness behaviors. Objectives: Regarding the anti-inflammatory effects of thymoquinone (TQ), its protection against BBB permeability, as a possible mechanism for protective effects against sickness behaviors elicited by lipopolysaccharide (LPS), was evaluated in rats. Methods: The animals were grouped as follows and treated (n = 10 in each): (1) control (saline); (2) LPS 1 mg/kg, was injected two hours before behavioral tests for two weeks; (3-5) 2, 5, and 10 mg/kg TQ, respectively was injected 30 min before LPS injection. Open-field (OF), elevated plus-maze (EPM) and Forced Swimming test (FST) were done. Finally, the animals were anesthetized to evaluate for BBB permeability using Evans blue (EB) dye method. Results: Compared with control, LPS decreased the peripheral distance and crossing and also total crossing and distance in OF, (P < 0.01 - P < 0.001). The central crossing and distance and central time in all three treatment groups were more than LPS (P < 0.05 - P < 0.001). LPS also reduced the entries and the time spent in the open arm while increased the time spent in the closed arm in EPM (P < 0.05 - P < 0.001). The effects of LPS were reversed by TQ (P < 0.05 - P < 0.001). In FST, the immobility time and active time were increased and decreased by LPS compared with control (P < 0.001), respectively. In all three TQ-treated groups, the active and climbing times were more while the immobility time was fewer than the LPS (P < 0.05 - P < 0.001). The animals of the LPS group showed more EB dye content in their brain tissue than the control group (P < 0.05 - P < 0.001). TQ significantly reduced EB dye content of the brain tissues (P < 0.05 - P < 0.001). Conclusions: According to this study, protection against BBB permeability as a possible mechanism for the protective effects of TQ against sickness behaviors induced by LPS might be suggested.


2019 ◽  
Vol 21 (Supplement_3) ◽  
pp. iii49-iii49
Author(s):  
A F Keßler ◽  
E Salvador ◽  
D Domröse ◽  
M Burek ◽  
C Tempel Brami ◽  
...  

Abstract BACKGROUND Alternating electric fields with intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm), known as Tumor Treating Fields (TTFields), have been established as a novel adjuvant therapy for glioblastoma (GBM) patients. The blood brain barrier (BBB) tightly controls the influx of the majority of compounds from blood to brain. Due to this regulation, the BBB may block delivery of drugs for treatment of brain tumors, in particular GBM. In this study, we investigated the influence of TTFields on BBB permeability in vivo. MATERIAL AND METHODS For determination of BBB permeability, rats were treated with 100 kHz TTFields for 72 h. At the end of treatment, rats were i.v. injected with Evan′s Blue (EB), which binds Albumin (~70 kDa) upon injection to the blood. EB was extracted after brain homogenization and quantified at 610 nm. In addition, cryosections of rat brains were prepared following TTFields application at 100 kHz for 72 h, and sections were stained for Claudin 5, Occludin and immunoglobulin G (IgG) to assess vessel structure. Moreover, serial dynamic contrast-enhanced DCE-MRI with Gadolinium contrast agent (Gd) was performed before and after TTFields application. RESULTS In vivo, the EB accumulation in the brain was significantly increased by application of TTFields to the rat head. Claudin 5 and Occludin staining was visible in vessel endothelial cells and localized at the cells’ edges in control cryosections of rat brains. In TTFields-treated rats, the vessel structure became diffuse; Claudin 5 and Occludin were delocalized and IgG was found throughout the brain tissue and not solely inside the vessels, as it is normally the case. Serial DCE-MRI demonstrated significantly increased accumulation of Gd in the brain, detected directly after 72 h of TTFields application. 96 h after end of TTFields treatment the effect on the BBB disappeared and no difference in contrast enhancement between controls and TTFields treated animals was observable. CONCLUSION Application of TTFields at 100 kHz could have the potential to deliver drugs to the brain, which normally are unable to cross the BBB by altering BBB integrity and permeability. Utilizing TTFields to open the BBB and its subsequent recovery, as demonstrated by the data presented herein, could lead to a clinical approach of drug delivery for treatment of malignant brain tumors and other diseases of the central nervous system. These results will be further validated in clinical trials.


Sign in / Sign up

Export Citation Format

Share Document