scholarly journals Perfusion of Brain Preautonomic Areas in Hypertension: Compensatory Absence of Capillary Rarefaction and Protective Effects of Exercise Training

2021 ◽  
Vol 12 ◽  
Author(s):  
Maria Tereza Jordão ◽  
Alexandre Ceroni ◽  
Lisete C. Michelini

Remodeling of capillary rarefaction and deleterious arteries are characteristic hallmarks of hypertension that are partially corrected by exercise training. In addition, experimental evidence showed capillary rarefaction within the brain cortex and reduced cerebral blood flow. There is no information on hypertension- and exercise-induced effects on capillary profile and function within preautonomic nuclei. We sought now to evaluate the effects of hypertension and exercise training (T) on the capillary network within hypothalamic paraventricular (PVN) and solitary tract (NTS) nuclei, and on the remodeling of brain arteries. Age-matched spontaneously hypertensive rats (SHR) and Wistar-Kyoto (WKY), submitted to moderate T or kept sedentary (S) for three months, were chronically cannulated for hemodynamic recordings at rest. Rats were anesthetized for i.v. administration of fluorescein isothiocyanate (FITC)-dextran (capillary volume/density measurements) or 4% paraformaldehyde perfusion (basilar, middle, and posterior arteries' morphometry) followed by brain harvesting and processing. Other groups of conscious rats had carotid blood flow (CBF, ultrasound flowmeter) acquired simultaneously with hemodynamic recordings at rest and exercise. SHR-S exhibited elevated pressure and heart rate, reduced CBF, increased wall/lumen ratio of arteries, but no capillary rarefaction within the PVN and NTS. T improved performance gain and caused resting bradycardia in both groups; reduction of pressure and sympathetic vasomotor activity and normalization of the wall/lumen ratio were only observed in SHR-T. T groups responded with marked PVN and NTS capillary angiogenesis and augmented CBF during exercise; to avoid overperfusion at rest, reduced basal CBF was observed only in WKY-T. Data indicated that the absence of SHR-S capillary rarefaction and the intense SHR-T angiogenesis within autonomic areas associated with correction of deleterious arteries' remodeling are essential adjustments to hypertension and exercise training, respectively. These adaptive responses maintain adequate baseline perfusion in SHR-S and SHR-T preautonomic nuclei, augmenting it in exercised rats when a well-coordinated autonomic control is required.

1985 ◽  
Vol 248 (1) ◽  
pp. H8-H14
Author(s):  
R. P. Crisman ◽  
R. J. Tomanek

We tested the hypothesis that exercise training provides a stimulus that could modify the decrement in mitochondria-to-myofibril volume ratio characteristic of myocardial cells hypertrophied in response to a pressure overload. Spontaneously hypertensive rats (SHR) were trained 5 days/wk on a treadmill at 70-90% maximal VO2 between the ages of 6 and 16 wk corresponding to the development of hypertension and cardiac hypertrophy. The training program increased maximal VO2 and effected a resting bradycardia but did not alter blood pressure, left ventricular hypertrophy, or peak cardiac output. Our stereological data from electron micrographs shows that the decrement in mitochondrial volume density and the increase in myofibril volume density characteristic of SHR compared with their normotensive controls (WKY, Wistar-Kyoto rats) were reversed. Thus the relative volumes of mitochondria and myofibrils and their ratio in trained SHR were similar to those of the WKY group. The similarity was noted in myocytes from both the subepicardium and subendocardium. These data suggest that exercise training facilitates a proportional growth of energy-producing and energy-consuming organelles in SHR and that this effect is not secondary to modification of blood pressure or left ventricular mass.


1995 ◽  
Vol 78 (1) ◽  
pp. 101-111 ◽  
Author(s):  
J. M. Lash ◽  
H. G. Bohlen

These experiments determined whether a deficit in oxygen supply relative to demand could account for the sustained decrease in tissue PO2 observed during contractions of the spinotrapezius muscle in spontaneously hypertensive rats (SHR). Relative changes in blood flow were determined from measurements of vessel diameter and red blood cell velocity. Venular hemoglobin oxygen saturation measurements were performed by using in vivo spectrophotometric techniques. The relative dilation [times control (xCT)] of arteriolar vessels during contractions was as large or greater in SHR than in normotensive rats (Wistar-Kyoto), as were the increases in blood flow (2 Hz, 3.50 +/- 0.69 vs. 3.00 +/- 1.05 xCT; 4 Hz, 10.20 +/- 3.06 vs. 9.00 +/- 1.48 xCT; 8 Hz, 16.40 +/- 3.95 vs. 10.70 +/- 2.48 xCT). Venular hemoglobin oxygen saturation was lower in the resting muscle of SHR than of Wistar-Kyoto rats (31.0 +/= 3.0 vs. 43.0 +/- 1.9%) but was higher in SHR after 4- and 8-Hz contractions (4 Hz, 52.0 +/- 4.8 vs. 43.0 +/- 3.6%; 8 Hz, 51.0 +/- 4.6 vs. 41.0 +/- 3.6%). Therefore, an excess in oxygen delivery occurs relative to oxygen use during muscle contractions in SHR. The previous and current results can be reconciled by considering the possibility that oxygen exchange is limited in SHR by a decrease in anatomic or perfused capillary density, arteriovenular shunting of blood, or decreased transit time of red blood cells through exchange vessels.


2006 ◽  
Vol 290 (3) ◽  
pp. H1081-H1089 ◽  
Author(s):  
Jamila Ibrahim ◽  
Ann McGee ◽  
Delyth Graham ◽  
John C. McGrath ◽  
Anna F. Dominiczak

Cerebral blood flow (CBF) is maintained constant despite changes in systemic blood pressure (BP) through multiple mechanisms of autoregulation such as vascular myogenic reactivity. Our aim was to determine myogenic characteristics of cannulated middle cerebral arteries (MCA) in male and female stroke-prone spontaneously hypertensive rats (SHRSP) and Wistar-Kyoto rats (WKY) at 12 wk of age under pressurised no-flow conditions. MCA pressure-diameter relationships (20–200 mmHg) were constructed in active (with calcium) and passive (without calcium) conditions, and myogenic and mechanical properties were determined. Myogenic reactivity in WKY ( P < 0.05) and SHRSP ( P < 0.05) males was impaired compared with their female counterparts. Comparison of SHRSP with WKY in males revealed similar myogenic reactivity, but in females SHRSP exhibited augmented myogenic reactivity ( P < 0.05). In both sexes, myogenic tone yielded at lower pressure in SHRSP compared with WKY vessels (120–140 vs. 140–180 mmHg). Stress-strain relationships and elastic moduli in WKY rats showed that vessels were stiffer in females than in males. Conversely, in SHRSP, male vessels were stiffer than female vessels. Comparison of strains in males indicated that stiffness was increased in SHRSP compared with WKY vessels, whereas the converse was observed in females. These findings demonstrate that MCA myogenic and distensibility characteristics exhibit significant sex- and strain-dependent differences. Inappropriate myogenic adaptation and augmented vascular stiffness, particularly in male SHRSP, are potential limiting factors in blood flow autoregulation and may increase the predisposition for stroke-related cerebrovascular events.


2011 ◽  
Vol 12 (4) ◽  
pp. 394-403 ◽  
Author(s):  
Silmara Ciampone ◽  
Rafael Borges ◽  
Ize P de Lima ◽  
Flávia F Mesquita ◽  
Elizabeth C Cambiucci ◽  
...  

Observations have been made regarding the effects of long-term exercise training on blood pressure, renal sodium handling and renal renin–angiotensin–aldosterone (RAS) intracellular pathways in conscious, trained Okamoto–Aoki spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKy) normotensive rats, compared with appropriate age-matched sedentary SHR and WKy. To evaluate the influence of exercise training on renal function and RAS, receptors and intracellular angiotensin II (AngII) pathway compounds were used respectively, and lithium clearance and western blot methods were utilised. The current study demonstrated that increased blood pressure in SHR was blunted and significantly reduced by long-term swim training between the ages of 6 and 16 weeks. Additionally, the investigators observed an increased fractional urinary sodium excretion in trained SHR (SHRT) rats, compared with sedentary SHR (SHRS), despite a significantly decreased creatinine clearance (CCr). Furthermore, immunoblotting analysis demonstrated a decreased expression of AT1R in the entire kidney of TSHR rats, compared with SSHR. Conversely, the expression of the AT2R, in both sedentary and trained SHR, was unchanged. The present study may indicate that, in the kidney, long-term exercise exerts a modulating effect on AngII receptor expression. In fact, the present study indicates an association of increasing natriuresis, reciprocal changes in renal AngII receptors and intracellular pathway proteins with the fall in blood pressure levels observed in TSHR rats compared with age-matched SSHR rats.


2000 ◽  
Vol 20 (6) ◽  
pp. 931-936 ◽  
Author(s):  
Hilary V. O. Carswell ◽  
Niall H. Anderson ◽  
James J. Morton ◽  
James McCulloch ◽  
Anna F. Dominiczak ◽  
...  

Recently the authors have shown that female stroke-prone spontaneously hypertensive rats (SHRSPs) in proestrus (high endogenous estrogen), sustain more than 20% smaller infarcts after middle cerebral artery occlusion (MCAO) compared with SHRSPs in metestrus (low endogenous estrogen). Because estrogen has vasodilator properties, the authors investigated whether the estrous state influences cerebral blood flow (CBF) after MCAO. CBF was measured 2.5 hours after a distal MCAO by [14C]iodo-antipyrine autoradiography in conscious SHRSPs either in metestrus or in proestrus. There were no significant differences in CBF when analyzed either at predetermined anatomic regions or by cumulative distribution analysis of areas with flow <25 mL/100 g/min. As a positive internal control, the authors compared results in SHRSPs with those in their normotensive reference strain, Wistar Kyoto rat. SHRSPs displayed more severe and widespread ischemia than Wistar Kyoto rats. Thus, the absence of demonstrable CBF differences between estrous states appears to be unrelated to the CBF measurement paradigm. In conclusion, the smaller infarct size afforded in proestrus in SHRSPs is unlikely to be due to an influence on CBF.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Joseph Iharinjaka Randriamboavonjy ◽  
Marc Rio ◽  
Pierre Pacaud ◽  
Gervaise Loirand ◽  
Angela Tesse

Moringa oleifera(MOI) is a tree currently used in traditional medicine in tropical Africa, America, and Asia for therapeutic applications in several disorders including arterial hypertension. We previously described a cardiac protective role of a treatment with MOI seeds in spontaneously hypertensive rats (SHR). Here, we investigated the effects of this treatment on oxidative and nitrosative vascular stresses in SHR, with normotensive Wistar Kyoto rats used as controls. Oxidative and nitrosative stresses detected in SHR aortas using the fluorescent dye dihydroethidine and protein nitrotyrosine staining were reduced in MOI-treated SHR aortas. This was associated with a decrease of free 8-isoprostane circulating level, vascular p22phoxand p47phoxexpressions, and SOD2 upregulation. Moreover, circulating nitrites and C-reactive protein, increased in SHR, were both reduced in SHR receiving MOI. This was associated to decrease iNOS and NF-κB protein expressions after MOI treatment. In functional studies, the endothelium-dependent carbachol-induced relaxation was improved in MOI-treated SHR resistance arteries. Oral administration of MOI seeds demonstrates vascular antioxidant, anti-inflammatory, and endothelial protective effects in SHR. Our data support the use of MOI seeds in diet against cardiovascular disorders associated with oxidative stress and inflammation such as hypertension, scientifically validating the use of these seeds in Malagasy traditional medicine.


2003 ◽  
Vol 284 (4) ◽  
pp. H1212-H1216 ◽  
Author(s):  
D. I. New ◽  
A. M. S. Chesser ◽  
R. C. Thuraisingham ◽  
M. M. Yaqoob

Impaired cerebral blood flow autoregulation is seen in uremic hypertension, whereas in nonuremic hypertension autoregulation is shifted toward higher perfusion pressure. The cerebral artery constricts in response to a rise in either lumen pressure or flow; we examined these responses in isolated middle cerebral artery segments from uremic Wistar-Kyoto rats (WKYU), normotensive control rats (WKYC), and spontaneously hypertensive rats (SHR). Pressure-induced (myogenic) constriction developed at 100 mmHg; lumen flow was then increased in steps from 0 to 98 μl/min. Some vessels were studied after endothelium ablation. Myogenic constriction was significantly lower in WKYU (28 ± 2.9%) compared with both WKYC (39 ± 2.5%, P = 0.035) and SHR (40 ± 3.1%, P = 0.018). Flow caused constriction of arteries from all groups in an endothelium-independent manner. The response to flow was similar in WKYU and WKYC, whereas SHR displayed increased constriction compared with WKYU ( P < 0.001) and WKYC ( P < 0.001). We conclude that cerebral myogenic constriction is decreased in WKYU, whereas flow-induced constriction is enhanced in SHR.


1987 ◽  
Vol 252 (3) ◽  
pp. F480-F486 ◽  
Author(s):  
B. M. Iversen ◽  
I. Sekse ◽  
J. Ofstad

Renal blood flow (RBF) autoregulation was examined in untreated 10- and 40-wk-old spontaneously hypertensive rats (SHR) [mean arterial pressure (MAP) 125 +/- 4 and 167 +/- 7 mmHg] and in captopril-treated (7 days) 10- and 40-wk-old SHR (88 +/- 7 and 112 +/- 5 mmHg). Age-matched Wistar-Kyoto rats (WKY) were used as controls (MAP 91 +/- 3 and 104 +/- 2 mmHg). The study was carried out in rats with and without acute uninephrectomy. In 10-wk-old acutely uninephrectomized animals, the lower pressure limit of autoregulation was 78 +/- 4 mmHg in WKY, 102 +/- 5 mmHg in SHR (P less than 0.02), and 78 +/- 7 mmHg in captopril-treated SHR (P greater than 0.10). The renal vascular resistance (RVR) was significantly elevated at the lower pressure limit of RBF autoregulation in untreated SHR (P less than 0.02) but became normal after treatment (P greater than 0.10). Neither uninephrectomy nor variation of RBF between different batches seemed to influence the lower pressure limit of RBF autoregulation. In 40-wk-old acutely nephrectomized animals, the lower pressure limit of RBF autoregulation in WKY was 85 +/- 4 mmHg, 128 +/- 3 mmHg in SHR (P less than 0.001), and 101 +/- 5 mmHg in captopril-treated SHR (P less than 0.01). RVR at the lower pressure limit was increased in untreated SHR (P less than 0.01), but fell to normal values during captopril treatment. Neither the uninephrectomy nor variation of RBF between different batches of rats seemed to influence the lower pressure limit of RBF autoregulation.(ABSTRACT TRUNCATED AT 250 WORDS)


2009 ◽  
Vol 296 (4) ◽  
pp. H1038-H1047 ◽  
Author(s):  
Steven G. Denniss ◽  
James W. E. Rush

The fact that endothelium removal increases diameter and compliance in the common carotid artery (CCA) of spontaneously hypertensive rats (SHR) and that improving CCA endothelium-dependent vasorelaxation has been shown to normalize a reduced systolic blood flow through the SHR CCA compared with normotensive Wistar-Kyoto rats (WKY) suggests that endothelial vasomotor dysfunction may be linked to altered large artery hemodynamics in hypertension. The experiments herein were designed to further investigate WKY and SHR CCA hemodynamics and endothelium-dependent vasomotor functions. It was hypothesized that CCA blood flow and conductance would be reduced throughout the cardiac cycle in SHR and that endothelium-dependent contractile activity would impair SHR CCA vasorelaxation. We report that mean, maximal systolic, and diastolic blood flow was reduced in SHR vs. WKY CCA, as was vascular conductance. Pressure was augmented in SHR CCA and accompanied by late systolic flow augmentation so that total flow during systole was indeed no different between strains, possibly explained by earlier lower body wave reflection. While ACh stimulation in isolated precontracted WKY CCA caused a robust nitric oxide (NO)-mediated vasorelaxation, endothelium-dependent, cyclooxygenase (COX)-mediated contractile activity stimulated by high ACh concentration impaired NO- and non-NO/non-COX-mediated vasorelaxation in precontracted SHR CCA. In quiescent CCA, this endothelium-dependent contractile response was COX-1 and thromboxane-prostanoid receptor mediated and modulated by the availability of NO. These data collectively suggest that endothelium-dependent, COX-mediated endoperoxide signaling in the CCA of SHR may elicit vasoconstriction, which could shift the mechanical properties of this conduit artery and contribute to reduced CCA blood flow in vivo.


Sign in / Sign up

Export Citation Format

Share Document