scholarly journals Genome Wide Association Mapping of Seedling and Adult Plant Resistance to Barley Stripe Rust (Puccinia striiformis f. sp. hordei) in India

2018 ◽  
Vol 9 ◽  
Author(s):  
Andrea Visioni ◽  
Sanjaya Gyawali ◽  
Rajan Selvakumar ◽  
Om P. Gangwar ◽  
Pradeep S. Shekhawat ◽  
...  
2018 ◽  
Vol 108 (2) ◽  
pp. 234-245 ◽  
Author(s):  
Jayfred Gaham Godoy ◽  
Sheri Rynearson ◽  
Xianming Chen ◽  
Michael Pumphrey

Stripe rust, caused by Puccinia striiformis f. sp. tritici, is a major yield-limiting foliar disease of wheat (Triticum aestivum) worldwide. In this study, the genetic variability of elite spring wheat germplasm from North America was investigated to characterize the genetic basis of effective all-stage and adult plant resistance (APR) to stripe rust. A genome-wide association study was conducted using 237 elite spring wheat lines genotyped with an Illumina Infinium 90K single-nucleotide polymorphism array. All-stage resistance was evaluated at seedling stage in controlled conditions and field evaluations were conducted under natural disease pressure in eight environments across Washington State. High heritability estimates and correlations between infection type and severity were observed. Ten loci for race-specific all-stage resistance were confirmed from previous mapping studies. Three potentially new loci associated with race-specific all-stage resistance were identified on chromosomes 1D, 2A, and 5A. For APR, 11 highly significant quantitative trait loci (QTL) (false discovery rate < 0.01) were identified, of which 3 QTL on chromosomes 3A, 5D, and 7A are reported for the first time. The QTL identified in this study can be used to enrich the current gene pool and improve the diversity of resistance to stripe rust disease.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yuqi Wang ◽  
Fengying Liang ◽  
Fangnian Guan ◽  
Fangjie Yao ◽  
Li Long ◽  
...  

The Chinese wheat landrace “Gaoxianguangtoumai” (GX) has exhibited a high level of adult-plant resistance (APR) to stripe rust in the field for more than a decade. To reveal the genetic background for APR to stripe rust in GX, a set of 249 F6:8 (F6, F7, and F8) recombinant inbred lines (RILs) was developed from a cross between GX and the susceptible cultivar “Taichung 29.” The parents and RILs were evaluated for disease severity at the adult-plant stage in the field by artificial inoculation with the currently predominant Chinese Puccinia striiformis f. sp. tritici races during three cropping seasons and genotyped using the Wheat 55K single-nucleotide polymorphism (SNP) array to construct a genetic map with 1,871 SNP markers finally. Two stable APR quantitative trait loci (QTL), QYr.GX-2AS and QYr.GX-7DS in GX, were detected on chromosomes 2AS and 7DS, which explained 15.5–27.0% and 11.5–13.5% of the total phenotypic variation, respectively. Compared with published Yr genes and QTL, QYr.GX-7DS and Yr18 may be the same, whereas QYr.GX-2AS is likely to be novel. Haplotype analysis revealed that QYr.GX-2AS is likely to be rare which presents in 5.3% of the 325 surveyed Chinese wheat landraces. By analyzing a heterogeneous inbred family (HIF) population from a residual heterozygous plant in an F8 generation of RIL, QYr.GX-2AS was further flanked by KP2A_36.85 and KP2A_38.22 with a physical distance of about 1.37Mb and co-segregated with the KP2A_37.09. Furthermore, three tightly linked Kompetitive allele-specific PCR (KASP) markers were highly polymorphic among 109 Chinese wheat cultivars. The results of this study can be used in wheat breeding for improving resistance to stripe rust.


PLoS ONE ◽  
2015 ◽  
Vol 10 (12) ◽  
pp. e0145462 ◽  
Author(s):  
Jindong Liu ◽  
Zhonghu He ◽  
Ling Wu ◽  
Bin Bai ◽  
Weie Wen ◽  
...  

2011 ◽  
Vol 64 ◽  
pp. 17-24
Author(s):  
S.F. Chng ◽  
M.G. Cromey ◽  
S.C. Shorter

Host resistance is the most economical way to manage wheat stripe rust caused by Puccinia striiformis f sp tritici The cultivar Claire was released in 1999 and until recently remained highly resistant to the disease in the United Kingdom While Claire was considered durably resistant to stripe rust in New Zealand it is now categorised as moderately susceptible The present study investigated whether racespecific resistance was responsible for this breakdown in resistance and whether cv Claire retains useful durable resistance A rust culture from cv Claire was compared with a pre2005 culture on a set of differential cultivars The seedling resistance in cv Claire was racespecific Greenhouse and field experiments suggest that the adult plant resistance in cv Claire has been reduced in the presence of a more virulent stripe rust population Remaining adult plant resistance is insufficient to provide adequate control of stripe rust in New Zealand wheat crops


2021 ◽  
Author(s):  
Minghu Zhang ◽  
Xin Liu ◽  
Ting Peng ◽  
Dinghao Wang ◽  
Dongyu Liang ◽  
...  

Abstract Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most damaging diseases of wheat globally and resistance is the effectively control strategy. Triticum boeoticum Boiss (T. monococcum L. ssp. aegilopoides, 2n = 2x = 14, AbAb) accession G52 confers a high level of adult-plant resistance against a mixture of the Chinese prevalent Pst races. To transfer the resistance to common wheat, a cross was made between G52 and susceptible common wheat genotype Crocus. A highly resistant wheat-T. boeoticum introgression line Z15-1370 (F5 generation) with 42 chromosomes was selected cytologically and by testing with Pst races. In order to map the resistance gene(s), F1, F2, and F2:3 generations of the cross between Z15-1370 and stripe rust susceptible common wheat Mingxian169 were developed. Genetic analysis revealed that the resistance in Z15-1370 was controlled by a single recessive gene, temporarily designated YrZ15-1370. Using the bulked segregant RNA-Seq (BSR-Seq) analysis, YrZ15-1370 was mapped to chromosome 6AL and flanked by markers KASP1370-3 and KASP-1370-5 within a 4.3 cM genetic interval corresponding to 1.8 Mb physical region in the Chinese Spring genome, in which a number of disease resistance-related genes were annotated. YrZ15-1370 differed from previously Yr genes identified on chromosome 6A based on its position and/or origin. The YrZ15-1370 would be a valuable resource for wheat resistance improvement and the flanking markers developed here should be useful tools for marker-assisted selection (MAS) in breeding and further cloning the gene.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2262
Author(s):  
Ghady E. Omar ◽  
Yasser S. A. Mazrou ◽  
Mohammad K. EL-Kazzaz ◽  
Kamal E. Ghoniem ◽  
Mammduh A. Ashmawy ◽  
...  

Adult plant resistance in wheat is an achievement of the breeding objective because of its durability in comparison with race-specific resistance. Partial resistance to wheat stripe rust disease was evaluated under greenhouse and field conditions during the period from 2016 to 2021. Misr 3, Sakha 95, and Giza 171 were the highest effective wheat genotypes against Puccinia striiformis f. sp. tritici races. Under greenhouse genotypes, Sakha 94, Giza 168, and Shandaweel1 were moderately susceptible, had the longest latent period and lowest values of the length of stripes and infection frequency at the adult stage. Partial resistance levels under field conditions were assessed, genotypes Sakha 94, Giza 168, and Shandaweel1 exhibited partial resistance against the disease. Leaf tip necrosis (LTN) was noted positively in three genotypes Sakha 94, Sakha 95, and Shandaweel1. Molecular analyses of Yr18 were performed for csLV34, cssfr1, and cssfr2 markers. Only Sakha 94 and Shandaweel1 proved to carry the Yr18 resistance allele at both phenotypic and genotypic levels. Scanning electron microscopy (SEM) observed that the susceptible genotypes were colonized extensively on leaves, but on the slow-rusting genotype, the pustules were much less in number, diminutive, and poorly sporulation, which is similar to the pustule of NIL Jupateco73 ‘R’.


Sign in / Sign up

Export Citation Format

Share Document