scholarly journals Immunolocalization and Changes of Hydroxyproline-Rich Glycoproteins During Symbiotic Germination of Dendrobium officinale

2018 ◽  
Vol 9 ◽  
Author(s):  
Yuan-Yuan Li ◽  
Xiao-Mei Chen ◽  
Ying Zhang ◽  
Yu-Hsiu Cho ◽  
Ai-Rong Wang ◽  
...  
2020 ◽  
Vol 21 (17) ◽  
pp. 6104 ◽  
Author(s):  
Juan Chen ◽  
Bo Yan ◽  
Yanjing Tang ◽  
Yongmei Xing ◽  
Yang Li ◽  
...  

Seeds of almost all orchids depend on mycorrhizal fungi to induce their germination in the wild. The regulation of this symbiotic germination of orchid seeds involves complex crosstalk interactions between mycorrhizal establishment and the germination process. The aim of this study was to investigate the effect of gibberellins (GAs) on the symbiotic germination of Dendrobium officinale seeds and its functioning in the mutualistic interaction between orchid species and their mycobionts. To do this, we used liquid chromatograph-mass spectrometer to quantify endogenous hormones across different development stages between symbiotic and asymbiotic germination of D. officinale, as well as real-time quantitative PCR to investigate gene expression levels during seed germination under the different treatment concentrations of exogenous gibberellic acids (GA3). Our results showed that the level of endogenous GA3 was not significantly different between the asymbiotic and symbiotic germination groups, but the ratio of GA3 and abscisic acids (ABA) was significantly higher during symbiotic germination than asymbiotic germination. Exogenous GA3 treatment showed that a high concentration of GA3 could inhibit fungal colonization in the embryo cell and decrease the seed germination rate, but did not significantly affect asymbiotic germination or the growth of the free-living fungal mycelium. The expression of genes involved in the common symbiotic pathway (e.g., calcium-binding protein and calcium-dependent protein kinase) responded to the changed concentrations of exogenous GA3. Taken together, our results demonstrate that GA3 is probably a key signal molecule for crosstalk between the seed germination pathway and mycorrhiza symbiosis during the orchid seed symbiotic germination.


2014 ◽  
Vol 62 (3) ◽  
pp. 229 ◽  
Author(s):  
J. Chen ◽  
H. Wang ◽  
S. S. Liu ◽  
Y. Y. Li ◽  
S. X. Guo

Dendrobium officinale is an endangered epiphytic orchidaceous medicinal plant. Similar to other orchid plants, the seed germination of D. officinale under natural conditions depends nutritionally upon mycorrhizal fungi. The compatible fungi have been isolated from D. officinale protocorms using in situ seed baiting technique in our previous studies. However, the interaction between seed germination of D. officinale and its mycobiont is still unclear. In the present study, we investigated the morphological changes of seed and fungus during the symbiotic germination using a light microscope and transmission electron microscope. Seeds of D. officinale have no conspicuous suspensor cells. The fungus enters into the embryo cell through the posterior end of the embryo and colonises the cortical cell in the first stage of germination (Stage 1). Then, the hyphae form pelotons with the protocorm development (Stages 1–3). After protocorm formation, the reinvaded fungal hyphae conspicuously decrease. Invaded hyphae lose bioactivity, form clumps and start degeneration at Stage 4 or 5 (seedling development). When penetrating the neighbouring cortical cell, the fungal hyphae constrict to collar shape at the contacted site and follow by swelling in the apex. Our study suggested that fungi trigger protocorm development and concomitant reserve utilisation during the symbiotic germination.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Can Si ◽  
Chunmei He ◽  
Jaime A. Teixeira da Silva ◽  
Zhenming Yu ◽  
Jun Duan

2021 ◽  
pp. 100995
Author(s):  
Shengchang Tao ◽  
Chunlei Huang ◽  
Zhihong Tan ◽  
Shuna Duan ◽  
Xiaofeng Zhang ◽  
...  

2021 ◽  
Vol 13 (5) ◽  
pp. 2826
Author(s):  
Yan Tong ◽  
Hui Huang ◽  
YuHua Wang

Trihelix transcription factors play important roles in plant growth, development and various stress responses. In this study, we identified 32 trihelix family genes (DoGT) in the important Chinese medicinal plant Dendrobium officinale. These trihelix genes could be classified into five different subgroups. The gene structure and conserved functional domain of these trihelix genes were similar in the same subfamily but diverged between different subfamilies. Various stresses responsive cis-elements presented in the promoters of DoGT genes, suggesting that the trihelix genes might respond to the environmental stresses. Expressional changes of DoGT genes in three tissues and under cold treatment suggested that trihelix genes were involved in diverse functions during D. officinale development and cold tolerance. This study provides novel insights into the phylogenetic relationships and functions of the D. officinaletrihelix genes, which will aid future functional studies investigating the divergent roles of trihelix genes belonging to other species.


2021 ◽  
Vol 22 (10) ◽  
pp. 5221
Author(s):  
Danqi Zeng ◽  
Jaime A. Teixeira da Silva ◽  
Mingze Zhang ◽  
Zhenming Yu ◽  
Can Si ◽  
...  

The APETALA2 (AP2) transcription factors (TFs) play crucial roles in regulating development in plants. However, a comprehensive analysis of the AP2 family members in a valuable Chinese herbal orchid, Dendrobium officinale, or in other orchids, is limited. In this study, the 14 DoAP2 TFs that were identified from the D. officinale genome and named DoAP2-1 to DoAP2-14 were divided into three clades: euAP2, euANT, and basalANT. The promoters of all DoAP2 genes contained cis-regulatory elements related to plant development and also responsive to plant hormones and stress. qRT-PCR analysis showed the abundant expression of DoAP2-2, DoAP2-5, DoAP2-7, DoAP2-8 and DoAP2-12 genes in protocorm-like bodies (PLBs), while DoAP2-3, DoAP2-4, DoAP2-6, DoAP2-9, DoAP2-10 and DoAP2-11 expression was strong in plantlets. In addition, the expression of some DoAP2 genes was down-regulated during flower development. These results suggest that DoAP2 genes may play roles in plant regeneration and flower development in D. officinale. Four DoAP2 genes (DoAP2-1 from euAP2, DoAP2-2 from euANT, and DoAP2-6 and DoAP2-11 from basal ANT) were selected for further analyses. The transcriptional activation of DoAP2-1, DoAP2-2, DoAP2-6 and DoAP2-11 proteins, which were localized in the nucleus of Arabidopsis thaliana mesophyll protoplasts, was further analyzed by a dual-luciferase reporter gene system in Nicotiana benthamiana leaves. Our data showed that pBD-DoAP2-1, pBD-DoAP2-2, pBD-DoAP2-6 and pBD-DoAP2-11 significantly repressed the expression of the LUC reporter compared with the negative control (pBD), suggesting that these DoAP2 proteins may act as transcriptional repressors in the nucleus of plant cells. Our findings on AP2 genes in D. officinale shed light on the function of AP2 genes in this orchid and other plant species.


Sign in / Sign up

Export Citation Format

Share Document