scholarly journals A Na2CO3-Responsive Chitinase Gene From Leymus chinensis Improve Pathogen Resistance and Saline-Alkali Stress Tolerance in Transgenic Tobacco and Maize

2020 ◽  
Vol 11 ◽  
Author(s):  
Xiangguo Liu ◽  
Ying Yu ◽  
Qing Liu ◽  
Suren Deng ◽  
Xuebo Jin ◽  
...  
2019 ◽  
Author(s):  
Xiang-Guo Liu ◽  
Ying Yu ◽  
Qing Liu ◽  
Suren Deng ◽  
Xue-Bo Jin ◽  
...  

AbstractSalinity and microbial pathogens are the major limiting factors for crop production. Although the manipulation of many genes could improve plant performance under either of these stresses, few genes have reported that could improve both pathogen resistance and saline-alkali stress tolerance. In this study, we identified a new chitinase gene CHITINASE 2 (LcCHI2) that encodes a class II chitinase from a Chinese wildrye (Leymus Chinensis), which grows naturally on alkaline-sodic soil. Overexpression of LcCHI2 increased chitinase activity in transgenic plants. The transgenic tobacco and maize exhibited improved pathogen resistance and enhanced both neutral salt and alkaline salt stress tolerance. Overexpression of LcCHI2 reduced sodium (Na+) accumulation, malondialdehyde content and relative electrical conductivity in transgenic tobacco under salt stress. In addition, the transgenic tobacco showed diminished lesion against bacterial and fungal pathogen challenge, suggesting an improved disease resistance. Similar improved performance was also observed in LcCHI2-overexpressed maize under both pathogen and salt stresses. It is worth noting that this genetic manipulation does not impair the growth and yield of transgenic tobacco and maize under normal cultivation condition. Apparently, application of LcCHI2 provides a new train of thought for genetically engineering saline-alkali and pathogen resistant crops of both dicots and monocots.


Biology ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 309
Author(s):  
Showkat Ahmad Ganie ◽  
Anireddy S. N. Reddy

Improvements in yield and quality of rice are crucial for global food security. However, global rice production is substantially hindered by various biotic and abiotic stresses. Making further improvements in rice yield is a major challenge to the rice research community, which can be accomplished through developing abiotic stress-resilient rice varieties and engineering durable agrochemical-independent pathogen resistance in high-yielding elite rice varieties. This, in turn, needs increased understanding of the mechanisms by which stresses affect rice growth and development. Alternative splicing (AS), a post-transcriptional gene regulatory mechanism, allows rapid changes in the transcriptome and can generate novel regulatory mechanisms to confer plasticity to plant growth and development. Mounting evidence indicates that AS has a prominent role in regulating rice growth and development under stress conditions. Several regulatory and structural genes and splicing factors of rice undergo different types of stress-induced AS events, and the functional significance of some of them in stress tolerance has been defined. Both rice and its pathogens use this complex regulatory mechanism to devise strategies against each other. This review covers the current understanding and evidence for the involvement of AS in biotic and abiotic stress-responsive genes, and its relevance to rice growth and development. Furthermore, we discuss implications of AS for the virulence of different rice pathogens and highlight the areas of further research and potential future avenues to develop climate-smart and disease-resistant rice varieties.


2012 ◽  
Vol 39 (12) ◽  
pp. 10201-10209 ◽  
Author(s):  
Luciana C. Cidade ◽  
Tahise M. de Oliveira ◽  
Amanda F. S. Mendes ◽  
Amanda F. Macedo ◽  
Eny I. S. Floh ◽  
...  

2020 ◽  
Vol 71 (21) ◽  
pp. 6758-6774 ◽  
Author(s):  
Mohammad Abass Ahanger ◽  
Javaid Akhter Bhat ◽  
Manzer H Siddiqui ◽  
Jörg Rinklebe ◽  
Parvaiz Ahmad

Abstract As sessile organisms, plants are unable to avoid being subjected to environmental stresses that negatively affect their growth and productivity. Instead, they utilize various mechanisms at the morphological, physiological, and biochemical levels to alleviate the deleterious effects of such stresses. Amongst these, secondary metabolites produced by plants represent an important component of the defense system. Secondary metabolites, namely phenolics, terpenes, and nitrogen-containing compounds, have been extensively demonstrated to protect plants against multiple stresses, both biotic (herbivores and pathogenic microorganisms) and abiotic (e.g. drought, salinity, and heavy metals). The regulation of secondary metabolism by beneficial elements such as silicon (Si) is an important topic. Silicon-mediated alleviation of both biotic and abiotic stresses has been well documented in numerous plant species. Recently, many studies have demonstrated the involvement of Si in strengthening stress tolerance through the modulation of secondary metabolism. In this review, we discuss Si-mediated regulation of the synthesis, metabolism, and modification of secondary metabolites that lead to enhanced stress tolerance, with a focus on physiological, biochemical, and molecular aspects. Whilst mechanisms involved in Si-mediated regulation of pathogen resistance via secondary metabolism have been established in plants, they are largely unknown in the case of abiotic stresses, thus leaving an important gap in our current knowledge.


2020 ◽  
Vol 92 (1) ◽  
pp. 95-106
Author(s):  
Huimin Ma ◽  
Congcong Zheng ◽  
Yingzhi Gao ◽  
Carol C. Baskin ◽  
Hao Sun ◽  
...  

2014 ◽  
Vol 37 (4) ◽  
pp. 907-919 ◽  
Author(s):  
Gurusamy Dhandapani ◽  
Azhagiyamanavalan Lakshmi Prabha ◽  
Mogilicherla Kanakachari ◽  
Mullapudi Lakshmi Venkata Phanindra ◽  
Narayanasamy Prabhakaran ◽  
...  

2014 ◽  
Vol 69 (3-4) ◽  
pp. 142-148 ◽  
Author(s):  
Chao Huang ◽  
Shiyi Zhou ◽  
Wei Hu ◽  
Xiaomin Deng ◽  
Shuya Wei ◽  
...  

Aquaporin proteins (AQPs) have been shown to be involved in abiotic stress responses. However, the precise role of AQPs, especially in response to cold stress, is not understood in wheat (Triticum aestivum). In the present study, quantitative real time polymerase chain reaction (qRT-PCR) analysis revealed that TaAQP7 expression increased in leaves, but decreased in roots after cold treatment. Expression of TaAQP7 in tobacco plants resulted in increased root elongation and better growth compared with wild-type (WT) plants under cold stress. Moreover, after cold treatment, the transgenic tobacco lines exhibited higher chlorophyll contents, lower levels of malondialdehyde (MDA), and less ion leakage (IL) than WT plants. Thus, expression of TaAQP7 enhanced cold stress tolerance in transgenic tobacco. Taken together, our results suggest that TaAQP7 confers cold stress tolerance by relieving membrane damage in the transgenic plants.


Sign in / Sign up

Export Citation Format

Share Document