scholarly journals Regulation of Early Plant Development by Red and Blue Light: A Comparative Analysis Between Arabidopsis thaliana and Solanum lycopersicum

2020 ◽  
Vol 11 ◽  
Author(s):  
Kiki Spaninks ◽  
Jelmer van Lieshout ◽  
Wim van Ieperen ◽  
Remko Offringa

In vertical farming, plants are grown in multi-layered growth chambers supplied with energy-efficient LEDs that produce less heat and can thus be placed in close proximity to the plants. The spectral quality control allowed by LED lighting potentially enables steering plant development toward desired phenotypes. However, this requires detailed knowledge on how light quality affects different developmental processes per plant species or even cultivar, and how well information from model plants translates to horticultural crops. Here we have grown the model dicot Arabidopsis thaliana (Arabidopsis) and the crop plant Solanum lycopersicum (tomato) under white or monochromatic red or blue LED conditions. In addition, seedlings were grown in vitro in either light-grown roots (LGR) or dark-grown roots (DGR) LED conditions. Our results present an overview of phenotypic traits that are sensitive to red or blue light, which may be used as a basis for application by tomato nurseries. Our comparative analysis showed that young tomato plants were remarkably indifferent to the LED conditions, with red and blue light effects on primary growth, but not on organ formation or flowering. In contrast, Arabidopsis appeared to be highly sensitive to light quality, as dramatic differences in shoot and root elongation, organ formation, and developmental phase transitions were observed between red, blue, and white LED conditions. Our results highlight once more that growth responses to environmental conditions can differ significantly between model and crop species. Understanding the molecular basis for this difference will be important for designing lighting systems tailored for specific crops.

2020 ◽  
Vol 103 (2) ◽  
pp. 690-704
Author(s):  
Diana E. Gras ◽  
Natanael Mansilla ◽  
Carina Rodríguez ◽  
Elina Welchen ◽  
Daniel H. Gonzalez

HortScience ◽  
2015 ◽  
Vol 50 (1) ◽  
pp. 112-118 ◽  
Author(s):  
Celina Gómez ◽  
Cary A. Mitchell

Seedlings of six tomato (Solanum lycopersicum) cultivars (‘Maxifort’, ‘Komeett’, ‘Success’, ‘Felicity’, ‘Sheva Sheva’, and ‘Liberty’) were grown monthly for 2-week treatment periods to determine photomorphogenic and developmental responses to different light-quality treatments from supplemental lighting (SL) across changing solar daily light integrals (DLIs). Seedlings were grown in a glass-glazed greenhouse at a midnorth latitude (lat. 40° N, long. 86° W) under one of five lighting treatments: natural solar light only (control), natural + SL from a 100-W high-pressure sodium (HPS) lamp, or natural + SL from arrays of red and blue light-emitting diodes (LEDs) using 80% red + 20% blue, 95% red + 5% blue, or 100% red. Varying solar DLI occurred naturally for all treatments, whereas constant DLI of 5.1 mol·m−2·d−1 was provided for all SL treatments. Supplemental lighting increased hypocotyl diameter, epicotyl length, shoot dry weight, leaf number, and leaf expansion relative to the control, whereas hypocotyl elongation decreased when SL was applied. For all cultivars tested, the combination of red and blue in SL typically increased growth of tomato seedlings. These results indicate that blue light in SL has potential to increase overall seedling growth compared with blue-deficient LED SL treatments in overcast, variable-DLI climates.


Genes ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 50 ◽  
Author(s):  
Aleksey A. Penin ◽  
Anna V. Klepikova ◽  
Artem S. Kasianov ◽  
Evgeny S. Gerasimov ◽  
Maria D. Logacheva

The knowledge of gene functions in model organisms is the starting point for the analysis of gene function in non-model species, including economically important ones. Usually, the assignment of gene functions is based on sequence similarity. In plants, due to a highly intricate gene landscape, this approach has some limitations. It is often impossible to directly match gene sets from one plant species to another species based only on their sequences. Thus, it is necessary to use additional information to identify functionally similar genes. Expression patterns have great potential to serve as a source of such information. An important prerequisite for the comparative analysis of transcriptomes is the existence of high-resolution expression maps consisting of comparable samples. Here, we present a transcriptome atlas of tomato (Solanum lycopersicum) consisting of 30 samples of different organs and developmental stages. The samples were selected in a way that allowed for side-by-side comparison with the Arabidopsis thaliana transcriptome map. Newly obtained data are integrated in the TraVA database and are available online, together with tools for their analysis. In this paper, we demonstrate the potential of comparing transcriptome maps for inferring shifts in the expression of paralogous genes.


Inventions ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 52
Author(s):  
Rajan Kapoor ◽  
Aniruddha Datta ◽  
Michael Thomson

Conventional breeding approaches that focus on yield under highly favorable nutrient conditions have resulted in reduced genetic and trait diversity in crops. Under the growing threat from climate change, the mining of novel genes in more resilient varieties can help dramatically improve trait improvement efforts. In this work, we propose the use of the joint graphical lasso for discovering genes responsible for desired phenotypic traits. We prove its efficiency by using gene expression data for wild type and delayed flowering mutants for the model plant. Arabidopsis thaliana shows that it recovers the mutation causing genes LNK1 and LNK2. Some novel interactions of these genes were also predicted. Observing the network level changes between two phenotypes can also help develop meaningful biological hypotheses regarding the novel functions of these genes. Now that this data analysis strategy has been validated in a model plant, it can be extended to crop plants to help identify the key genes for beneficial traits for crop improvement.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rina Saito ◽  
Kengo Hayashi ◽  
Haruna Nomoto ◽  
Misuzu Nakayama ◽  
Yousuke Takaoka ◽  
...  

Abstract(+)-7-iso-Jasmonoyl-l-isoleucine (JA-Ile) is a lipid-derived phytohormone implicated in plant development, reproduction, and defense in response to pathogens and herbivorous insects. All these effects are instigated by the perception of JA-Ile by the COI1-JAZ co-receptor in the plant body, which in Arabidopsis thaliana is profoundly influenced by the short JAZ degron sequence (V/L)P(Q/I)AR(R/K) of the JAZ protein. Here, we report that SlJAZ-SlCOI1, the COI1-JAZ co-receptor found in the tomato plant, relies on the extended JAZ degron sequence (V/L)P(Q/I)AR(R/K)XSLX instead of the canonical JAZ degron. This finding illuminates our understanding of the mechanism of ligand perception by JA-Ile in this plant, and will inform both efforts to improve it by genetic modification of the SlCOI1-SlJAZ co-receptor, and the development of the synthetic agonists/antagonists.


2019 ◽  
Vol 50 (18) ◽  
pp. 2294-2308
Author(s):  
Muhammad Amjad ◽  
Nuzhat Ameen ◽  
Behzad Murtaza ◽  
Ghulam Abbas ◽  
Muhammad Imran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document