scholarly journals Extended JAZ degron sequence for plant hormone binding in jasmonate co-receptor of tomato SlCOI1-SlJAZ

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rina Saito ◽  
Kengo Hayashi ◽  
Haruna Nomoto ◽  
Misuzu Nakayama ◽  
Yousuke Takaoka ◽  
...  

Abstract(+)-7-iso-Jasmonoyl-l-isoleucine (JA-Ile) is a lipid-derived phytohormone implicated in plant development, reproduction, and defense in response to pathogens and herbivorous insects. All these effects are instigated by the perception of JA-Ile by the COI1-JAZ co-receptor in the plant body, which in Arabidopsis thaliana is profoundly influenced by the short JAZ degron sequence (V/L)P(Q/I)AR(R/K) of the JAZ protein. Here, we report that SlJAZ-SlCOI1, the COI1-JAZ co-receptor found in the tomato plant, relies on the extended JAZ degron sequence (V/L)P(Q/I)AR(R/K)XSLX instead of the canonical JAZ degron. This finding illuminates our understanding of the mechanism of ligand perception by JA-Ile in this plant, and will inform both efforts to improve it by genetic modification of the SlCOI1-SlJAZ co-receptor, and the development of the synthetic agonists/antagonists.

2021 ◽  
Author(s):  
Minoru Ueda ◽  
Rina Saito ◽  
Kengo Hayashi ◽  
Haruna Nomoto ◽  
Misuzu Nakayama ◽  
...  

Abstract (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile) is a lipid-derived phytohormone implicated in plant development, reproduction, and defense in response to pathogens and herbivorous insects. All these effects are instigated by the perception of JA-Ile by the COI1-JAZ co-receptor in the plant body, which in Arabidopsis thaliana, is profoundly influenced by the short JAZ degron sequence (V/L)P(Q/I)AR(R/K) of the JAZ protein. Here, we report that SlJAZ-SlCOI1, the COI1-JAZ co-receptor found in the tomato plant, relies on the extended JAZ degron sequence (V/L)P(Q/I)AR(R/K)XSLX instead of the canonical JAZ degron. This finding illuminates our understanding of the mechanism of JA-Ile perception in this plant, and will inform the genetic modification of the SlCOI1-SlJAZ co-receptor to improve JA-Ile perception and the development of the synthetic agonists / antagonists.


2021 ◽  
Author(s):  
Jiuxiao Ruan ◽  
Huhui Chen ◽  
Tao Zhu ◽  
Yaoguang Yu ◽  
Yawen Lei ◽  
...  

Abstract In flowering plants, repression of the seed maturation program is essential for the transition from the seed to the vegetative phase, but the underlying mechanisms remain poorly understood. The B3-domain protein VIVIPAROUS1/ABSCISIC ACID-INSENSITIVE3-LIKE 1 (VAL1) is involved in repressing the seed maturation program. Here we uncovered a molecular network triggered by the plant hormone brassinosteroid (BR) that inhibits the seed maturation program during the seed-to-seedling transition in Arabidopsis (Arabidopsis thaliana). val1-2 mutant seedlings treated with a BR biosynthesis inhibitor form embryonic structures, whereas BR signaling gain-of-function mutations rescue the embryonic structure trait. Furthermore, the BR-activated transcription factors BRI1-EMS-SUPPRESSOR 1 and BRASSINAZOLE-RESISTANT 1 bind directly to the promoter of AGAMOUS-LIKE15 (AGL15), which encodes a transcription factor involved in activating the seed maturation program, and suppress its expression. Genetic analysis indicated that BR signaling is epistatic to AGL15 and represses the seed maturation program by downregulating AGL15. Finally, we showed that the BR-mediated pathway functions synergistically with the VAL1/2-mediated pathway to ensure the full repression of the seed maturation program. Together, our work uncovered a mechanism underlying the suppression of the seed maturation program, shedding light on how BR promotes seedling growth.


Planta ◽  
2003 ◽  
Vol 218 (1) ◽  
pp. 42-49 ◽  
Author(s):  
Ingrid Vleghels ◽  
Jan Hontelez ◽  
Ana Ribeiro ◽  
Paul Fransz ◽  
Ton Bisseling ◽  
...  

Phenomics ◽  
2014 ◽  
pp. 111-141
Author(s):  
Christine Granier ◽  
Vincent Nègre ◽  
Fabio Fiorani

Irriga ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 432-448
Author(s):  
Cícero José da Silva ◽  
José Antônio Frizzone ◽  
César Antônio da Silva ◽  
Nadson de Carvalho Pontes ◽  
Luiz Felipe Mariano da Silva ◽  
...  

DESENVOLVIMENTO DO TOMATEIRO INDUSTRIAL EM RESPOSTA A DIFERENTES NÍVEIS DE IRRIGAÇÃO     Cícero José da Silva1; José Antônio Frizzone2; César Antônio da Silva3; Nadson de Carvalho Pontes4; Luiz Felipe Mariano da Silva5 E Ênio Eduardo Basílio6   1Professor do Curso Bacharelado em Agronomia, Instituto Federal Goiano – Campus Morrinhos – GO, BR 153, Km 633, Zonal Rural, CEP;75650-000, Morrinhos – GO, Brasil. E-mail: [email protected] 2Professor Aposentado Colaborador Senior, Departamento de Engenharia de Biossitemas, Escola Superior de Agricultura “Luiz de Queiroz” – Universidade de São Paulo, Avenida Pádua Dias, N 11, Caixa Postal 9, CEP: 13418-900, Piracicaba – SP, Brasil. E-mail: [email protected] 3Professor do Curso Bacharelado em Agronomia, Instituto Federal Goiano – Campus Morrinhos – GO, BR 153, Km 633, Zonal Rural, CEP;75650-000, Morrinhos – GO, Brasil. E-mail: [email protected] 4Professor do Curso Bacharelado em Agronomia, Instituto Federal Goiano – Campus Morrinhos – GO, BR 153, Km 633, Zonal Rural, CEP;75650-000, Morrinhos – GO, Brasil. E-mail: [email protected] 5Estudante de Iniciação Científica do Curso Bacharelado em Agronomia, Instituto Federal Goiano – Campus Morrinhos – GO, BR 153, Km 633, Zonal Rural, CEP;75650-000, Morrinhos – GO, Brasil. E-mail: [email protected] 6Técnico Administrativo, Mestre em Olericultura, Instituto Federal Goiano – Campus Morrinhos – GO, BR 153, Km 633, Zonal Rural, CEP;75650-000, Morrinhos – GO, Brasil. E-mail: [email protected]     1 RESUMO   O objetivo desta pesquisa foi avaliar o desenvolvimento de plantas de tomateiros submetidas a diferentes níveis de reposição da irrigação, aplicados via sistema gotejamento subsuperficial durante duas safras. O experimento foi conduzido no delineamento em blocos ao acaso, com quatro repetições. Foram avaliados cinco níveis de irrigação: 50, 75, 100, 125 e 150% da evapotranspiração da cultura (%ETc) medida com lisímetros de pesagem, sobre o desenvolvimento de plantas de tomateiro. Cada parcela experimental foi composta por três fileiras de plantas de 5,5 m de comprimento, espaçadas a 1,10 m entre si e 0,30 m entre plantas. As avaliações de área foliar, índice de área foliar, massa seca de raiz, caule, folhas, flores, frutos e total foram realizadas aos 45, 65 e 85 dias após o transplante das mudas. Irrigações deficitárias e em excesso prejudicaram o desenvolvimento vegetativo das plantas de tomateiro. Os maiores valores de área foliar, índice de área foliar e massa seca total das plantas de tomateiro foram estimados com níveis de irrigação que variaram de 96 a 112% da ETc, variando de acordo com o ano de avaliação e a fase de desenvolvimento do tomateiro. Irrigações deficitárias e excessivas prejudicaram a floração e frutificação do tomateiro híbrido BRS Sena.             Palavras-chave: Solanum lycopersicom L.; gotejamento enterrado; manejo da irrigação; massa seca.             Silva, c. j. da; FRIZZONE, J. A.; SILVA, C. A. da; pontes, n. de C.; SILVA, L. F. M. da; BASÍLIO, Ê. E. Industrial tomato plant development in response to different irrigation levels    2 ABSTRACT   This research aimed to evaluate tomato plant development submitted to different irrigation replacement levels, irrigated via subsurface drip system for two harvests. The experiment was conducted under a randomized complete block design with four replications. Five irrigation levels were evaluated: 50, 75, 100, 125 and 150% of crop evapotranspiration (% ETc) measured with weighing lysimeters over the tomato plants development. Each experimental plot was composed of three plants rows with 5.5 m long, spaced 1.10 m apart and 0.30 m between plants. Leaf area, leaf area index, root dry matter, stem, leaves, flowers, fruits and total were evaluated at 45, 65 and 85 days after seedlings transplanting. Deficit and excess irrigation impaired the vegetative development of tomato plants. The highest values of leaf area, leaf area index and plants total dry mass were estimated with irrigation levels ranging from 96 to 112% of ETc, depending on the evaluation harvest year and the crop development phase. Deficit and excessive irrigation affected the flowering and fruiting of the hybrid tomato BRS Sena.   Keywords: Solanum lycopersicom L; subsurface drip irrigation; irrigation manegement; dry mass.


Development ◽  
1999 ◽  
Vol 126 (4) ◽  
pp. 711-721 ◽  
Author(s):  
Q. Tian ◽  
J.W. Reed

The plant hormone auxin controls many aspects of development and acts in part by inducing expression of various genes. Arabidopsis thaliana semidominant shy2 (short hypocotyl) mutations cause leaf formation in dark-grown plants, suggesting that SHY2 has an important role in regulating development. Here we show that the SHY2 gene encodes IAA3, a previously known member of the Aux/IAA family of auxin-induced genes. Dominant shy2 mutations cause amino acid changes in domain II, conserved among all members of this family. We isolated loss-of-function shy2 alleles including a putative null mutation. Gain-of-function and loss-of-function shy2 mutations affect auxin-dependent root growth, lateral root formation, and timing of gravitropism, indicating that SHY2/IAA3 regulates multiple auxin responses in roots. The phenotypes suggest that SHY2/IAA3 may activate some auxin responses and repress others. Models invoking tissue-specificity, feedback regulation, or control of auxin transport may explain these results.


2021 ◽  
Author(s):  
Arnaud-Thierry Djami-Tchatchou ◽  
Zipeng Alex Li ◽  
Paul Stodghill ◽  
Melanie J. Filiatrault ◽  
Barbara N. Kunkel

The auxin indole-3-acetic acid (IAA) is a plant hormone that not only regulates plant growth and development but also plays important roles in plant-microbe interactions. We previously reported that IAA alters expression of several virulence-related genes in the plant pathogen Pseudomonas syringae pv. tomato strain DC3000 ( Pto DC3000). To learn more about the impact of IAA on regulation of Pto DC3000 gene expression we performed a global transcriptomic analysis of bacteria grown in culture, in the presence or absence of exogenous IAA. We observed that IAA repressed expression of genes involved in the Type III secretion (T3S) system and motility and promoted expression of several known and putative transcriptional regulators. Several of these regulators are orthologs of factors known to regulate stress responses and accordingly expression of several stress response-related genes was also upregulated by IAA. Similar trends in expression for several genes were also observed by RT-qPCR. Using an Arabidopsis thaliana auxin receptor mutant that accumulates elevated auxin, we found that many of the P. syringae genes regulated by IAA in vitro were also regulated by auxin in planta . Collectively the data indicate that IAA modulates many aspects of Pto DC3000 biology, presumably to promote both virulence and survival under stressful conditions, including those encountered in or on plant leaves. IMPORTANCE Indole-3-acetic acid (IAA), a form of the plant hormone auxin, is used by many plant-associated bacteria as a cue to sense the plant environment. Previously, we showed that IAA can promote disease in interactions between the plant pathogen Pseudomonas syringae strain Pto DC000 and one of its hosts, Arabidopsis thaliana . However, the mechanisms by which IAA impacts the biology of Pto DC3000 and promotes disease are not well understood. Here we demonstrate that IAA is a signal molecule that regulates gene expression in Pto DC3000. The presence of exogenous IAA affects expression of over 700 genes in the bacteria, including genes involved in Type III secretion and genes involved in stress response. This work offers insight into the roles of auxin promoting pathogenesis.


Molecules ◽  
2019 ◽  
Vol 24 (6) ◽  
pp. 1144 ◽  
Author(s):  
Cristina Popa

Ethylene is a classical plant hormone and has appeared as a strong molecule managing many physiological and morphological reactions during the life of a plant. With laser-based photoacoustic spectroscopy, ethylene can be identified with high sensitivity, at a high rate and with very good selectivity. This research presents the dynamics of trace gases molecules for ethylene released by cherry flowers, apple flowers and strawberry flowers. The responses of distinctive organs to ethylene may fluctuate, depending on tissue sensitivity and the phase of plant development. From the determinations of this study, the ethylene molecules at the flowers in the nitrogen flow were established in lower concentrations when the value is correlated to the ethylene molecules at the flowers in synthetic air flow.


Sign in / Sign up

Export Citation Format

Share Document