scholarly journals The Adjustment of Membrane Lipid Metabolism Pathways in Maize Roots Under Saline–Alkaline Stress

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoxuan Xu ◽  
Jinjie Zhang ◽  
Bowei Yan ◽  
Yulei Wei ◽  
Shengnan Ge ◽  
...  

Plants are frequently confronted by diverse environmental stress, and the membrane lipids remodeling and signaling are essential for modulating the stress responses. Saline–alkaline stress is a major osmotic stress affecting the growth and development of crops. In this study, an integrated transcriptomic and lipidomic analysis was performed, and the metabolic changes of membrane lipid metabolism in maize (Zea mays) roots under saline–alkaline stress were investigated. The results revealed that phospholipids were major membrane lipids in maize roots, and phosphatidylcholine (PC) accounts for approximately 40% of the total lipids. Under 100 mmol NaHCO3 treatment, the level of PC decreased significantly (11–16%) and the parallel transcriptomic analysis showed an increased expression of genes encoding phospholipase A and phospholipase D/non-specific phospholipase C, which suggested an activated PC turnover under saline–alkaline stress. The plastidic galactolipid synthesis was also activated, and an abnormal generation of C34:6 galactolipids in 18:3 plants maize implied a plausible contribution from the prokaryotic pathway, which could be partially supported by the up-regulated expression of three putative plastid-localized phosphatidic acid phosphatase/lipid phosphate phosphatase. A comprehensive gene–metabolite network was constructed, and the regulation of membrane lipid metabolism under saline–alkaline stress in maize was discussed.

2021 ◽  
Vol 12 ◽  
Author(s):  
Xunchao Zhao ◽  
Yulei Wei ◽  
Jinjie Zhang ◽  
Li Yang ◽  
Xinyu Liu ◽  
...  

Low temperature is one of the major abiotic stresses that restrict the growth and development of maize seedlings. Membrane lipid metabolism and remodeling are key strategies for plants to cope with temperature stresses. In this study, an integrated lipidomic and transcriptomic analysis was performed to explore the metabolic changes of membrane lipids in the roots of maize seedlings under cold stress (5°C). The results revealed that major extraplastidic phospholipids [phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylinositol (PI)] were dominant membrane lipids in maize root tissues, accounting for more than 70% of the total lipids. In the transcriptome data of maize roots under cold stress, a total of 189 lipid-related differentially expressed genes (DEGs) were annotated and classified into various lipid metabolism pathways, and most of the DEGs were enriched in the “Eukaryotic phospholipid synthesis” (12%), “Fatty acid elongation” (12%), and “Phospholipid signaling” (13%) pathways. Under low temperature stress, the molar percentage of the most abundant phospholipid PC decreased around 10%. The significantly up-regulated expression of genes encoding phospholipase [phospholipase D (PLD)] and phosphatase PAP/LPP genes implied that PC turnover was triggered by cold stress mainly via the PLD pathway. Consequently, as the central product of PC turnover, the level of PA increased drastically (63.2%) compared with the control. The gene-metabolite network and co-expression network were constructed with the prominent lipid-related DEGs to illustrate the modular regulation of metabolic changes of membrane lipids. This study will help to explicate membrane lipid remodeling and the molecular regulation mechanism in field crops encountering low temperature stress.


2021 ◽  
Vol 22 (4) ◽  
pp. 2174
Author(s):  
Liang Lin ◽  
Junchao Ma ◽  
Qin Ai ◽  
Hugh W. Pritchard ◽  
Weiqi Li ◽  
...  

Plant species conservation through cryopreservation using plant vitrification solutions (PVS) is based in empiricism and the mechanisms that confer cell integrity are not well understood. Using ESI-MS/MS analysis and quantification, we generated 12 comparative lipidomics datasets for membranes of embryogenic cells (ECs) of Magnolia officinalis during cryogenic treatments. Each step of the complex PVS-based cryoprotocol had a profoundly different impact on membrane lipid composition. Loading treatment (osmoprotection) remodeled the cell membrane by lipid turnover, between increased phosphatidic acid (PA) and phosphatidylglycerol (PG) and decreased phosphatidylcholine (PC) and phosphatidylethanolamine (PE). The PA increase likely serves as an intermediate for adjustments in lipid metabolism to desiccation stress. Following PVS treatment, lipid levels increased, including PC and PE, and this effectively counteracted the potential for massive loss of lipid species when cryopreservation was implemented in the absence of cryoprotection. The present detailed cryobiotechnology findings suggest that the remodeling of membrane lipids and attenuation of lipid degradation are critical for the successful use of PVS. As lipid metabolism and composition varies with species, these new insights provide a framework for technology development for the preservation of other species at increasing risk of extinction.


Antibiotics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 531
Author(s):  
Alejandro Gallardo ◽  
María Ugarte-Ruiz ◽  
Marta Hernández ◽  
Pedro Miguela-Villoldo ◽  
David Rodríguez-Lázaro ◽  
...  

Plasmid-mediated colistin resistance (mcr) determinants are challenging the efficacy of polymyxins against Gram-negative pathogens. Among 10 mcr genes described so far, the major determinants mcr-1 and mcr-3 are found closely linked to hpap2 or dgkA genes, encoding a hypothetical phosphatidic acid phosphatase of type 2 (PAP2) and a diacylglycerol kinase, respectively, whose functions are still unknown. In this study, mcr-1, mcr-1–hpap2, mcr-3, and mcr-3–dgkA were expressed in Escherichia coli, and recombinant strains were analyzed to detect antimicrobial susceptibility and changes in the expression of genes involved in phospholipid metabolism. The mcr-1 or mcr-3 single genes were enough to drive growth on colistin selective media, although co-expression of linked genes conferred maximal antibiotic resistance. Expression of mcr determinants downregulated endogenous genes involved in lipopolysaccharide (LPS) modification or phospholipid recycling, although to different extents of repression: strong for arnB, ybjG, and pmrR; medium for eptA, lpxT, and dgkA; small for bacA and pgpB. Four of these genes (bacA, lpxT, pgpB, and ybjG) encode undecaprenyl pyrophosphate (UPP) phosphatases. In these conditions, cells presented resistance against bacitracin, an antibiotic that sequesters UPP from PAP2 enzymes. The hpap2 and dgkA genes might play a role in colistin resistance by compensating for phospholipid metabolism functions altered during LPS modification by colistin resistance determinants.


1991 ◽  
Vol 16 (2) ◽  
pp. 271-281 ◽  
Author(s):  
Jean-Luc Evrard ◽  
Colette Jako ◽  
Agn�s Saint-Guily ◽  
Jacques-Henry Weil ◽  
Marcel Kuntz

2021 ◽  
Vol 118 (12) ◽  
pp. e2100825118
Author(s):  
Di Chen ◽  
Arghyashree Roychowdhury-Sinha ◽  
Pragya Prakash ◽  
Xiao Lan ◽  
Wenmin Fan ◽  
...  

Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet. 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.


2019 ◽  
Vol 20 (17) ◽  
pp. 4264 ◽  
Author(s):  
Qi Guo ◽  
Lei Liu ◽  
Bronwyn J. Barkla

Salinity is one of the most decisive environmental factors threatening the productivity of crop plants. Understanding the mechanisms of plant salt tolerance is critical to be able to maintain or improve crop yield under these adverse environmental conditions. Plant membranes act as biological barriers, protecting the contents of cells and organelles from biotic and abiotic stress, including salt stress. Alterations in membrane lipids in response to salinity have been observed in a number of plant species including both halophytes and glycophytes. Changes in membrane lipids can directly affect the properties of membrane proteins and activity of signaling molecules, adjusting the fluidity and permeability of membranes, and activating signal transduction pathways. In this review, we compile evidence on the salt stress responses of the major membrane lipids from different plant tissues, varieties, and species. The role of membrane lipids as signaling molecules in response to salinity is also discussed. Advances in mass spectrometry (MS)-based techniques have largely expanded our knowledge of salt-induced changes in lipids, however only a handful studies have investigated the underlying mechanisms of membrane lipidome regulation. This review provides a comprehensive overview of the recent works that have been carried out on lipid remodeling of plant membranes under salt treatment. Challenges and future perspectives in understanding the mechanisms of salt-induced changes to lipid metabolisms are proposed.


Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1612 ◽  
Author(s):  
Yongchao Zhu ◽  
Ke Wang ◽  
Chunxia Wu ◽  
Yun Zhao ◽  
Xueren Yin ◽  
...  

Peach is prone to postharvest chilling injury (CI). Here it was found that exogenous ethylene alleviated CI, accompanied by an increased endogenous ethylene production. Ethylene treatment resulted in a moderately more rapid flesh softening as a result of stronger expression of genes encoding expansin and cell wall hydrolases, especially xylosidase and galactosidase. Ethylene treatment alleviated internal browning, accompanied by changes in expression of polyphenol oxidase, peroxidase and lipoxygenases. An enhanced content of phospholipids and glycerolipids and a reduced content of ceramide were observed in ethylene-treated fruit, and these were associated with up-regulation of lipid phosphate phosphatase, fatty acid alpha-hydroxylase, and golgi-localized nucleotide sugar transporter, as well as down-regulation of aminoalcohol phosphotransferases. Expression of two ethylene response factors (ERFs), ESE3 and ABR1, was highly correlated with that of genes involved in cell wall metabolism and lipid metabolism, respectively. Furthermore, the expression of these two ERFs was strongly regulated by ethylene treatment and the temperature changes during transfer of fruit into or out of cold storage. It is proposed that ERFs fulfill roles as crucial integrators between cell wall modifications and lipid metabolism involved in CI processes ameliorated by exogenous ethylene.


2009 ◽  
Vol 160 (8) ◽  
pp. 567-575 ◽  
Author(s):  
Guadalupe Gómez-Baena ◽  
Oriol Alberto Rangel ◽  
Antonio López-Lozano ◽  
Jose Manuel García-Fernández ◽  
Jesús Diez

Sign in / Sign up

Export Citation Format

Share Document