scholarly journals Soybean Nodulation Response to Cropping Interval and Inoculation in European Cropping Systems

2021 ◽  
Vol 12 ◽  
Author(s):  
Mosab Halwani ◽  
Moritz Reckling ◽  
Dilfuza Egamberdieva ◽  
Richard Ansong Omari ◽  
Sonoko D. Bellingrath-Kimura ◽  
...  

To support the adaption of soybean [Glycine max (L) Merrill] cultivation across Central Europe, the availability of compatible soybean nodulating Bradyrhizobia (SNB) is essential. Little is known about the symbiotic potential of indigenous SNB in Central Europe and the interaction with an SNB inoculum from commercial products. The objective of this study was to quantify the capacity of indigenous and inoculated SNB strains on the symbiotic performance of soybean in a pot experiment, using soils with and without soybean history. Under controlled conditions in a growth chamber, the study focused on two main factors: a soybean cropping interval (time since the last soybean cultivation; SCI) and inoculation with commercial Bradyrhizobia strains. Comparing the two types of soil, without soybean history and with 1–4 years SCI, we found out that plants grown in soil with soybean history and without inoculation had significantly more root nodules and higher nitrogen content in the plant tissue. These parameters, along with the leghemoglobin content, were found to be a variable among soils with 1–4 years SCI and did not show a trend over the years. Inoculation in soil without soybean history showed a significant increase in a nodulation rate, leghemoglobin content, and soybean tissue nitrogen concentration. The study found that response to inoculation varied significantly as per locations in soil with previous soybean cultivation history. An inoculated soybean grown on loamy sandy soils from the location Müncheberg had significantly more nodules as well as higher green tissue nitrogen concentration compared with non-inoculated plants. No significant improvement in a nodulation rate and tissue nitrogen concentration was observed for an inoculated soybean grown on loamy sandy soils from the location Fehrow. These results suggest that introduced SNB strains remained viable in the soil and were still symbiotically competent for up to 4 years after soybean cultivation. However, the symbiotic performance of the SNB remaining in the soils was not sufficient in all cases and makes inoculation with commercial products necessary. The SNB strains found in the soil of Central Europe could also be promising candidates for the development of inoculants and already represent a contribution to the successful cultivation of soybeans in Central Europe.

2011 ◽  
Vol 149 (5) ◽  
pp. 633-638 ◽  
Author(s):  
R. CONFALONIERI ◽  
C. DEBELLINI ◽  
M. PIRONDINI ◽  
P. POSSENTI ◽  
L. BERGAMINI ◽  
...  

SUMMARYA reliable evaluation of crop nutritional status is crucial for supporting fertilization aiming at maximizing qualitative and quantitative aspects of production and reducing the environmental impact of cropping systems. Most of the available simulation models evaluate crop nutritional status according to the nitrogen (N) dilution law, which derives critical N concentration as a function of above-ground biomass. An alternative approach, developed during a project carried out with students of the Cropping Systems Masters course at the University of Milan, was tested and compared with existing models (N dilution law and approaches implemented in EPIC and DAISY models). The new model (MAZINGA) reproduces the effect of leaf self-shading in lowering plant N concentration (PNC) through an inverse of the fraction of radiation intercepted by the canopy. The models were tested using data collected in four rice (Oryza sativaL.) experiments carried out in Northern Italy under potential and N-limited conditions. MAZINGA was the most accurate in identifying the critical N concentration, and therefore in discriminating PNC of plants growing under N-limited and non-limited conditions, respectively. In addition, the present work proved the effectiveness of crop models when used as tools for supporting education.


Author(s):  
Laura Masilionytė ◽  
Stanislava Maikštėnienė ◽  
Aleksandras Velykis ◽  
Antanas Satkus

The paper presents the research conducted at the Joniškėlis Experimental Station of the Lithuanian Research Centre for Agriculture and Forestry on a clay loam Gleyic Cambisol during the period of 2006–2010. The research investigated the changes of mineral nitrogen in soil growing catch crops during the winter wheat post-harvest period and incorporating their biomass into the soil for green manure. Green manure implications for environmental sustainability were assessed. The studies were carried out in the soil with a low (1.90–2.00%) and moderate (2.10–2.40%) humus content in organic and sustainable cropping systems. The crop rotation, expanded in time and space, consisted of red clover (Trifolium pretense L.) → winter wheat (Triticum aestivum L.) → field pea (Pisum sativum L.) → spring barley (Hordeum vulgare L.) with undersown red clover. Investigations of mineral nitrogen migration were assessed in the crop rotation sequence: winter wheat + catch crops → field pea. Higher organic matter and nitrogen content in the biomass of catch crops were accumulated when Brassisaceae (white mustard, Sinapis alba L.) was grown in a mixture with buckwheat (Fagopyrum esculentum Moench.) or as a sole crop, compared with oilseed radish (Raphanus sativus var. Oleiferus Metzg.) grown with the long-day legume plants blue lupine (Lupinus angustifolius L.). Mineral nitrogen concentration in soil depended on soil humus status, cropping system and catch crop characteristics. In late autumn there was significantly higher mineral nitrogen concentration in the soil with moderate humus content, compared with soil with low humus content. The lowest mineral nitrogen concentration in late autumn in the 0–40 cm soil layer and lower risk of leaching into deeper layers was measured using organic cropping systems with catch crops. The highest mineral nitrogen concentration was recorded in the sustainable cropping system when mineral nitrogen fertilizer (N30) was applied for winter wheat straw decomposition. In the organic cropping system, the incorporation of catch crop biomass into soil resulted in higher mineral nitrogen reserves in soil in spring than in the sustainable cropping system, (mineral nitrogen fertilizer (N30) applied for straw decomposition in autumn and no catch crop grown). Applying organic cropping systems with catch crops is an efficient tool to promote environmental sustainability.


2020 ◽  
Vol 287 (1919) ◽  
pp. 20192549 ◽  
Author(s):  
Kelsey A. Gano-Cohen ◽  
Camille E. Wendlandt ◽  
Khadija Al Moussawi ◽  
Peter J. Stokes ◽  
Kenjiro W. Quides ◽  
...  

Bacterial mutualists generate major fitness benefits for eukaryotes, reshaping the host phenotype and its interactions with the environment. Yet, microbial mutualist populations are predicted to generate mutants that defect from providing costly services to hosts while maintaining the capacity to exploit host resources. Here, we examined the mutualist service of symbiotic nitrogen fixation in a metapopulation of root-nodulating Bradyrhizobium spp . that associate with the native legume Acmispon strigosus . We quantified mutualism traits of 85 Bradyrhizobium isolates gathered from a 700 km transect in California spanning 10 sampled A. strigosus populations. We clonally inoculated each Bradyrhizobium isolate onto A. strigosus hosts and quantified nodulation capacity and net effects of infection, including host growth and isotopic nitrogen concentration. Six Bradyrhizobium isolates from five populations were categorized as ineffective because they formed nodules but did not enhance host growth via nitrogen fixation. Six additional isolates from three populations failed to form root nodules. Phylogenetic reconstruction inferred two types of mutualism breakdown, including three to four independent losses of effectiveness and five losses of nodulation capacity on A. strigosus . The evolutionary and genomic drivers of these mutualism breakdown events remain poorly understood.


2015 ◽  
Vol 43 (1) ◽  
pp. 165-172
Author(s):  
Leonardo SULAS ◽  
Giovanni Antonio RE ◽  
Mauro SALIS ◽  
Giovanni GARAU ◽  
Maria SITZIA ◽  
...  

The legume’s benefits are well-known and exploited in animal production systems, and the commercial availability of novel clover cultivars is an important opportunity for Mediterranean climatic areas. However, the successful performance of a legume species is strongly affected by the presence of specific rhizobia in the soil. The performances of 10 annual clover cultivars belonging to nine species, both uninoculated and inoculated, were compared at two locations in Sardinia (Italy). The rows (2 m length each) were established in autumn and seed inoculation with a selected commercial rhizobial strain was performed at sowing. In the following spring, shoot length, the number of root nodules, shoot dry matter yield and nitrogen concentration were determined on complete recovered plants. Inoculation affected shoot length, with significant differences at each site. It ranged from 7.9 to 39.7 cm. The average shoot DM production in the two locations ranged from 0.21 to 1.92 g per plant and there was a significant interaction of the location x cultivar. Inoculation significantly increased the growth of four cultivars. However, a cultivar selected in Sardinia, Trifolium brachycalycinum ‘Antas’, was irrespective of both location and inoculation, producing more shoot DM per plant than did the other clovers (about 1.80 g per plant). The results demonstrated that the clover agronomic performances differed among cultivars and locations. In addition, they highlighted that inoculation with a selected rhizobial strain is very useful for some clovers, suggesting that is preferable to ascertain at each site the need for clover inoculation.


2017 ◽  
Vol 63 (8) ◽  
pp. 682-689
Author(s):  
Josiele Polzin de Oliveira-Francesquini ◽  
Mariangela Hungria ◽  
Daiani Cristina Savi ◽  
Chirlei Glienke ◽  
Rodrigo Aluizio ◽  
...  

In this study, we evaluated the diversity of rhizobia isolated from root nodules on common bean (Phaseolus vulgaris) derived from Andean and Mesoamerican centers and grown under field and greenhouse conditions. Genetic characterization of isolates was performed by sequencing analyses of the 16S rRNA gene and 2 housekeeping genes, recA and glnII, and by the amplification of nifH. Symbiotic efficiency was evaluated by examining nodulation, plant biomass production, and plant nitrogen (N) accumulation. The influence of the environment was observed in nodulation capacity, where Rhizobium miluonense was dominant under greenhouse conditions and the Rhizobium acidisoli group prevailed under field conditions. However, strain LGMB41 fit into a separate group from the type strain of R. acidisoli in terms of multilocus phylogeny, implying that it could belong to a new species. Rhizobium miluonense LGMB73 showed the best symbiotic efficiency performance, i.e., with the highest shoot-N content (77.7 mg/plant), superior to the commercial standard strain (56.9 mg/plant). Biodiversity- and bioprospecting-associated studies are important to better understand ecosystems and to develop more effective strategies to improve plant growth using a N-fixation process.


1993 ◽  
Vol 73 (2) ◽  
pp. 405-415 ◽  
Author(s):  
E. K. Yiridoe ◽  
A. Weersink ◽  
R. C. Roy ◽  
C. J. Swanton

Tobacco (Nicotiana tabacum L.) has been the predominant cash crop grown on sandy soils of southern Ontario, but the area cropped has fallen significantly with the decline in tobacco demand. Crops such as beans and wheat (Triticum aestivum L.) are technically feasible alternatives, but their yields have been highly variable. Cover crops and conservation tillage are approaches that may increase the productive capacity of sandy soils while reducing the environmental impact of present production systems. In this study, yields, costs and net returns of three bean-winter wheat cropping systems were evaluated under conventional tillage and four variations of no-till systems differentiated by the type of cover crop. The three beans considered were soybeans (Glycine max L. Merr.), white beans (Phaseolus vulgaris L.) and kidney beans (Phaseolus vulgaris L.). Average yields of the three beans grown under conventional tillage were consistently lower than those of the four no-till treatments, but the differences were significant in only a few years. Total production cost for the bean crops was $96 ha−1 lower for the no-till treatments than for conventional tillage. Average net returns for the rotation involving kidney beans were approximately $100 ha−1 higher than those involving white beans and $330 ha−1 higher than soybeans. Conventional tillage produced the lowest net returns within each of the bean/wheat rotations. Key words: Conventional tillage, no-till, bean, net returns


Author(s):  
Christian Thierfelder ◽  
Eric Paterson ◽  
Lumbani Mwafulirwa ◽  
Tim J Daniell ◽  
Jill E Cairns ◽  
...  

Abstract Climate change and soil fertility decline are major threats to smallholder farmers' food and nutrition security in southern Africa, and cropping systems that improve soil health are needed to address these challenges. Cropping systems that invest in soil organic matter, such as no-tillage (NT) with crop residue retention, have been proposed as potential solutions. However, a key challenge for assessing the sustainability of NT systems is that soil carbon (C) stocks develop over long timescales, and there is an urgent need to identify trajectory indicators of sustainability and crop productivity. Here we examined the effects of NT as compared with conventional tillage without residue retention on relationships between soil characteristics and maize (Zea mays L.) productivity in long-term on-farm and on-station trials in Zimbabwe. Our results show that relationships between soil characteristics and maize productivity, and the effects of management on these relationships, varied with soil type. Total soil nitrogen (N) and C were strong predictors of maize grain yield and above-ground biomass (i.e., stover) in the clayey soils, but not in the sandy soils, under both managements. This highlights context-specific benefits of management that fosters the accumulation of soil C and N stocks. Despite a strong effect of NT management on soil C and N in sandy soils, this accrual was not sufficient to support increased crop productivity in these soils. We suggest that sandy soils should be the priority target of NT with organic resource inputs interventions in southern Africa, as mineral fertilizer inputs alone will not halt the soil fertility decline. This will require a holistic management approach and input of C in various forms (e.g., biomass from cover crops and tree components, crop residues, in combination with mineral fertilizers). Clayey soils on the other hand have greater buffering capacity against detrimental effects of soil tillage and low C input.


Sign in / Sign up

Export Citation Format

Share Document