scholarly journals The Exocyst Complex Subunit EXO70E1-V From Haynaldia villosa Interacts With Wheat Powdery Mildew Resistance Gene CMPG1-V

2021 ◽  
Vol 12 ◽  
Author(s):  
Jia Zhao ◽  
Heng Zhang ◽  
Xu Zhang ◽  
Zongkuan Wang ◽  
Ying Niu ◽  
...  

EXO70 belongs to the exocyst complex subunit that plays a critical role in regulating plant cell polarity establishment and defense response. A previous study proved that the E3 ligase CMPG1-V from Haynaldia villosa, a diploid wheat relative, positively regulates the resistance to wheat powdery mildew (Pm), caused by fungus Blumeria graminis f.sp tritici (Bgt). In this study, a member of EXO70 superfamily named EXO70E1-V was isolated from H. villosa, and EXO70E1-V interacted with CMPG1-V were shown by yeast two-hybrid (Y2H), pull-down assay, bimolecular fluorescence complementation (BiFC) assay, and luciferase complementation imaging (LCI) assay. It is localized in various subcellular organs, i.e., plasma membrane (PM) and endoplasmic reticulum. Co-expression of EXO70E1-V and CMPG1-V showed dot-like structure fluorescence signals that were mainly in PM and nucleus. Expression of EXO70E1-V was relatively higher in leaf and was significantly induced by Bgt infection and exogenous application of hormones such as salicylic acid. Transient or stable overexpression of EXO70E1-V could not enhance/decrease the Pm resistance level, suggesting overexpression of EXO70E1-V alone has no impact on Pm resistance in wheat.

Author(s):  
Jinxin Gao ◽  
Jie Chen

We previously reported that the BTB domain-containing protein Clt1 regulates melanin and toxin synthesis, conidiation, and pathogenicity in Curvularia lunata, but the interacting proteins and regulative mechanism of Clt1 are unclear. In this research, we identified two proteins, which respectively correspond to xylanase (Clxyn24) and acetyl xylan esterase (Claxe43) from C. lunata were regulated by Clt1. Yeast two-hybrid (Y2H), and bimolecular fluorescence complementation assays were conducted to verify the interaction of Clt1 with full-length Clxyn24 and Claxe43. Furthermore, the Y2H assay revealed that Clt1 physically interacted with Clxyn24 and Claxe43 through its BTB domain to degrade xylan which was used as a carbon source for C. lunata growth. The utilization of xylan provides acetyl-CoA for the synthesis of melanin and toxin, as well as energy and other intermediate metabolites for conidiation. Furthermore, transcriptome analysis revealed that PKS18 and its 13 flanking genes are found clustered in a region spanning 57.89 kb on scaffold 9 of the C. lunata CX-3 genome were down-regulated in toxin production deficient mutant T806, and this cluster is possibly responsible for toxin biosynthesis of C. lunata.


2009 ◽  
Vol 22 (8) ◽  
pp. 999-1010 ◽  
Author(s):  
Heike Thiel ◽  
Mark Varrelmann

Beet necrotic yellow vein virus (BNYVV) induces the most important disease threatening sugar beet. The growth of partially resistant hybrids carrying monogenic dominant resistance genes stabilize yield but are unable to entirely prevent virus infection and replication. P25 is responsible for symptom development and previous studies have shown that recently occurring resistance-breaking isolates possess increased P25 variability. To better understand the viral pathogenicity factor's interplay with plant proteins and to possibly unravel the molecular basis of sugar beet antivirus resistance, P25 was applied in a yeast two-hybrid screen of a resistant sugar beet cDNA library. This screen identified candidate proteins recognized as orthologues from other plant species which are known to be expressed following pathogen infection and involved in plant defense response. Most of the candidates potentially related to host-pathogen interactions were involved in the ubiquitylation process and plants response to stress, and were part of cell and metabolism components. The interaction of several candidate genes with P25 was confirmed in Nicotiana benthamiana leaf cells by transient agrobacterium-mediated expression applying bimolecular fluorescence complementation assay. The putative functions of several of the candidates identified support previous findings and present first targets for understanding the BNYVV pathogenicity and antivirus resistance mechanism.


2014 ◽  
Vol 27 (11) ◽  
pp. 1199-1210 ◽  
Author(s):  
Minna-Liisa Rajamäki ◽  
Janne Streng ◽  
Jari P. T. Valkonen

Viral genome-linked protein (VPg) of potyviruses is involved in multiple steps of the potyvirus infection cycle, including viral multiplication and movement in plants. Recently, we showed that VPg of Potato virus A (PVA; genus Potyvirus) suppresses sense-mediated RNA silencing, which is linked to one or both nuclear or nucleolar localization. Here, we studied interactions between VPg and components of the plant RNA silencing pathway. Results showed that VPg interacts with the SGS3 protein of Solanum tuberosum and Arabidopsis thaliana, as shown by yeast two-hybrid analysis and bimolecular fluorescence complementation assays. VPg–SGS3 interactions co-localized with small cytoplasmic bodies that contained plant RNA-dependent RNA polymerase 6 (RDR6) (likely SGS3/RDR6 bodies). The N-terminal zinc finger (ZF) domain of SGS3 was the main determinant of the VPg interaction. Our data also suggest that the ZF domain controls SGS3 localization. SGS3 homodimerization was controlled by multiple protein regions. The VPg–SGS3 interaction appeared beneficial for PVA, as viral RNA levels correlated positively with sgs3 mRNA levels in the SGS3-silenced and SGS3-overexpressing leaves of Nicotiana benthamiana. The data support the idea that VPg acts as a suppressor of RNA silencing and suggest that an interaction with SGS3 may be important, especially in suppression of sense-mediated RNA silencing.


Viruses ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 421
Author(s):  
Elizabeth A. Vuono ◽  
Elizabeth Ramirez-Medina ◽  
Paul Azzinaro ◽  
Keith A. Berggren ◽  
Ayushi Rai ◽  
...  

E2 is the major structural glycoprotein of the classical swine fever virus (CSFV). E2 has been shown to be involved in important virus functions such as replication and virulence in swine. Using the yeast two-hybrid system, we previously identified several host proteins specifically interacting with CSFV E2. Here, we analyze the protein interaction of E2 with SERTA domain containing protein 1 (SERTAD1), a factor involved in the stimulation of the transcriptional activities of different host genes. We have confirmed that the interaction between these two proteins occurs in CSFV-infected swine cells by using a proximity ligation assay and confocal microscopy. Amino acid residues in the CSFV E2 protein that are responsible for mediating the interaction with SERTAD1 were mapped by a yeast two-hybrid approach using a randomly mutated E2 library. Using that information, a recombinant CSFV mutant (E2ΔSERTAD1v) that harbors substitutions in those residues mediating the protein-interaction with SERTAD1 was developed and used to study the role of the E2-SERTAD1 interaction in viral replication and virulence in swine. CSFV E2ΔSERTAD1v, when compared to the parental BICv, showed a clearly decreased ability to replicate in the SK6 swine cell line and a more severe replication defect in primary swine macrophage cultures. Importantly, 80% of animals infected with E2ΔSERTAD1v survived infection, remaining clinically normal during the 21-day observational period. This result would indicate that the ability of CSFV E2 to bind host SERTAD1 protein during infection plays a critical role in virus virulence.


1996 ◽  
Vol 16 (6) ◽  
pp. 3066-3073 ◽  
Author(s):  
O Hobert ◽  
B Jallal ◽  
A Ullrich

The proto-oncogene product Vav plays a critical role in hematopoietic signal transduction. By using the yeast two-hybrid system, we identified a novel human protein, ENX-1, which interacts specifically with Vav both in vitro and in vivo. ENX-1 represents the human homolog of the Drosophila Enhancer of zeste gene, a member of the Polycomb group of genes, which are transcriptional regulators of homeobox gene expression. Interaction with ENX-1 suggests that Vav functions as an upstream element in the transcriptional regulation of homeobox genes, known to be important effectors in the hematopoietic system.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1606
Author(s):  
Min Jeong Hong ◽  
Jin-Baek Kim ◽  
Yong Weon Seo ◽  
Dae Yeon Kim

F-box proteins are substrate recognition components of the Skp1-Cullin-F-box (SCF) complex, which performs many important biological functions including the degradation of numerous proteins via the ubiquitin–26S proteasome system. In this study, we isolated the gene encoding the F-box/LRR-repeat (FBXL) protein from wheat (Triticum aestivum L.) seedlings and validated that the TaFBXL protein is a component of the SCF complex. Yeast two-hybrid assays revealed that TaFBXL interacts with the wheat glycosylphosphatidylinositol-anchored protein (TaGPI-AP). The green fluorescent protein (GFP) fusion protein of TaFBXL was detected in the nucleus and plasma membrane, whereas that of TaGPI-AP was observed in the cytosol and probably also plasma membrane. yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assays revealed that TaFBXL specifically interacts with TaGPI-AP in the nucleus and plasma membrane, and TaGPI-AP is targeted by TaFBXL for degradation via the 26S proteasome system. In addition, TaFBXL and TaGPI-AP showed antagonistic expression patterns upon treatment with indole-3-acetic acid (IAA), and the level of TaGPI-AP was higher in tobacco leaves treated with both MG132 (proteasome inhibitor) and IAA than in leaves treated with either MG132 or IAA. Taken together, our data suggest that TaFBXL regulates the TaGPI-AP protein level in response to exogenous auxin application.


2020 ◽  
Vol 71 (20) ◽  
pp. 6282-6296
Author(s):  
Virginia Natali Miguel ◽  
Karina Fabiana Ribichich ◽  
Jorge Ignacio Giacomelli ◽  
Raquel Lia Chan

Abstract The sunflower (Helianthus annuus) homeodomain-leucine zipper I transcription factor HaHB11 conferred differential phenotypic features when it was expressed in Arabidopsis, alfalfa, and maize plants. Such differences were increased biomass, seed yield, and tolerance to flooding. To elucidate the molecular mechanisms leading to such traits and identify HaHB11-interacting proteins, a yeast two-hybrid screening of an Arabidopsis cDNA library was carried out using HaHB11 as bait. The sole protein identified with high confidence as interacting with HaHB11 was Kinesin 13B. The interaction was confirmed by bimolecular fluorescence complementation and by yeast two-hybrid assay. Kinesin 13B also interacted with AtHB7, the Arabidopsis closest ortholog of HaHB11. Histochemical analyses revealed an overlap between the expression patterns of the three genes in hypocotyls, apical meristems, young leaves, vascular tissue, axillary buds, cauline leaves, and cauline leaf nodes at different developmental stages. AtKinesin 13B mutants did not exhibit a differential phenotype when compared with controls; however, both HaHB11 and AtHB7 overexpressor plants lost, partially or totally, their differential phenotypic characteristics when crossed with such mutants. Altogether, the results indicated that Kinesin 13B is essential for the homeodomain-leucine zipper transcription factors I to exert their functions, probably via regulation of the intracellular distribution of these transcription factors by the motor protein.


Sign in / Sign up

Export Citation Format

Share Document