scholarly journals Relationship Between the Vascular Bundle Structure of Panicle Branches and the Filling of Inferior Spikelets in Large-Panicle Japonica Rice

2021 ◽  
Vol 12 ◽  
Author(s):  
Cuicui You ◽  
Hui Wang ◽  
Yaru Huang ◽  
Peng Xu ◽  
Liquan Wu ◽  
...  

The vascular bundles of rice panicles serve to connect the source and the sink, as well as serving as a channel for the transportation of materials. In this study, two homozygous japonica rice strains were used as materials. The vascular bundle structures of the branches in different positions within a rice panicle were observed, and their cross-sectional areas were calculated. In addition, the ultrastructure of the central large vascular bundle (LVB) phloem in the rachillae of superior spikelets (SS) and inferior spikelets (IS) was observed during the grain filling period. Moreover, the soluble sugar and protein contents of the SS and IS rachillae were also measured to study whether the differences in the structure of vascular bundles of the branches were related to the plumpness of grain at different positions. The results showed that vascular bundle cross-sectional areas of the basal primary branches were greater than those in the upper primary branches. Moreover, there was little difference in the areas of vascular bundles between the basal secondary branches and upper secondary branches. However, the vascular bundle areas of the IS rachillae were lower than those in the SS rachillae. Therefore, we believe that the poor vascular tissue channel of the IS rachillae could be the limiting factor in IS plumpness. The results also showed that a similar time course in the degradation pattern of some organelles of the sieve elements and companion cells in central LVB was observed in the SS rachillae and IS rachillae during the grain filling period. Compared with the IS rachillae, more abundant mitochondria and plasmodesmata were found in the companion cells of SS rachillae at the beginning of the filling stage, while no significant differences between SS and IS rachillae were identified at the middle and late filling stages, which implies that the SS rachillae were relatively more effective at transportation compared with the IS rachillae at the initial filling stage. Therefore, the undeveloped vascular bundles of the IS rachillae and their poor physiology and lack of ability to transport at the initial filling stages could be the limiting factor in IS plumpness.

2008 ◽  
Vol 59 (4) ◽  
pp. 354 ◽  
Author(s):  
J. T. Christopher ◽  
A. M. Manschadi ◽  
G. L. Hammer ◽  
A. K. Borrell

Water availability is a key limiting factor in wheat production in the northern grain belt of Australia. Varieties with improved adaptation to such conditions are actively sought. The CIMMYT wheat line SeriM82 has shown a significant yield advantage in multi-environment screening trials in this region. The objective of this study was to identify the physiological basis of the adaptive traits underpinning this advantage. Six detailed experiments were conducted to compare the growth, development, and yield of SeriM82 with that of the adapted cultivar, Hartog. The experiments were undertaken in field environments that represented the range of moisture availability conditions commonly encountered by winter crops grown on the deep Vertosol soils of this region. The yield of SeriM82 was 6–28% greater than that of Hartog, and SeriM82 exhibited a stay-green phenotype by maintaining green leaf area longer during the grain-filling period in all environments where yield was significantly greater than Hartog. However, where the availability of deep soil moisture was limited, SeriM82 failed to exhibit significantly greater yield or to express the stay-green phenotype. Thus, the stay-green phenotype was closely associated with the yield advantage of SeriM82. SeriM82 also exhibited higher mean grain mass than Hartog in all environments. It is suggested that small differences in water use before anthesis, or greater water extraction from depth after anthesis, could underlie the stay-green phenotype. The inability of SeriM82 to exhibit stay-green and higher yield where deep soil moisture was depleted indicates that extraction of deep soil moisture is important.


2015 ◽  
Vol 64 ◽  
pp. 29-33 ◽  
Author(s):  
Yanling Zhao ◽  
Min Xi ◽  
Xincheng Zhang ◽  
Zhaomiao Lin ◽  
Chengqiang Ding ◽  
...  

Paleobiology ◽  
2000 ◽  
Vol 26 (3) ◽  
pp. 405-418 ◽  
Author(s):  
A. Roth-Nebelsick ◽  
G. Grimm ◽  
V. Mosbrugger ◽  
H. Hass ◽  
H. Kerp

New morphometric data gathered from cross-sections of two Lower Devonian land plants (Rhynia gwynne-vaughanii and Asteroxylon mackiei) are interpreted in terms of the evolution of the function of vascular bundles in early land plants. The following conclusions can be drawn from these new data: (1) The ratio of the cross-sectional area of the xylem (representing the conducting volume supplying the axis with water) to the xylem perimeter (representing the “contact area” between xylem and parenchyma through which water leaves the xylem and enters the parenchyma) is not constant for Rhynia axes, almost constant for Asteroxylon axes, and different between Rhynia and Asteroxylon. Thus, Bowers hypothesis that the ratio of cross-sectional area of the xylem to xylem perimeter is constant during ontogenetic development is true for Asteroxylon. That this ratio is constant during phylogeny, however, is not supported by our data. (2) The ratio between cross-sectional area of xylem to parenchyma is higher in Asteroxylon than in Rhynia. (3) As predicted by previous computer simulations, the ratio of the xylem perimeter to the axis perimeter plays a major role in determining water transport performance of the transpiring axis. This ratio is constant within ontogeny but is different in Asteroxylon and Rhynia. In Asteroxylon axes, this ratio is about twice as large as in Rhynia axes. (4) Contrary to the expectations, the distance between the outermost layer of the xylem and the transpiring surface, which represents the low-conductivity pathway through the parenchyma, appears not to be a limiting factor for the water transport in axes of Rhynia and Asteroxylon. (5) From the analysis of the geometric parameters, it is evident that Rhynia and Asteroxylon with their distinct stelar geometries represent two different constructional types for which no transitional stages are known.


2015 ◽  
Vol 33 (6) ◽  
pp. 1844-1863 ◽  
Author(s):  
Zhixing Zhang ◽  
Jun Tang ◽  
Tingwei Du ◽  
Hong Zhao ◽  
Zhong Li ◽  
...  

2015 ◽  
Vol 737 ◽  
pp. 325-331
Author(s):  
Qi Wang ◽  
Shu Wang

Effects of nitrogen amount on yield and nutrient absorption of cold land japonica rice under the condition of straw returning were studied using cold land rice variety Dong Nong 428 as experimental material. The results showed as follows: yields and effective spikes increased first then reduced, and the highest yield and effective panicles per plant was 7983.33 kg·hm-2 and 17.7 per plant that was found in treatment with nitrogen amount was 133 kg/hm2; differences of plant N, P and K accumulation of each treatment in tillering stage were not obvious and showed single peak curve change in heading stage while took on obvious increasing trend in grain filling stage and maturity stage. The straw returning increased effective spikes while had no effects on yield, spike weight, total shriveled rate and 1000-grain weight; the straw returning also had no effects on N, P and K accumulation in tillering and heading stage while it inhibit N, P and K accumulation in grain filling stage, and it inhibited N accumulation while promoted P and K accumulation in maturity stage.


Sign in / Sign up

Export Citation Format

Share Document