scholarly journals The Rice Abscisic Acid-Responsive RING Finger E3 Ligase OsRF1 Targets OsPP2C09 for Degradation and Confers Drought and Salinity Tolerance in Rice

2022 ◽  
Vol 12 ◽  
Author(s):  
Suyeon Kim ◽  
Seong-Im Park ◽  
Hyeokjin Kwon ◽  
Mi Hyeon Cho ◽  
Beom-Gi Kim ◽  
...  

Drought and salinity are major important factors that restrain growth and productivity of rice. In plants, many really interesting new gene (RING) finger proteins have been reported to enhance drought and salt tolerance. However, their mode of action and interacting substrates are largely unknown. Here, we identified a new small RING-H2 type E3 ligase OsRF1, which is involved in the ABA and stress responses of rice. OsRF1 transcripts were highly induced by ABA, salt, or drought treatment. Upregulation of OsRF1 in transgenic rice conferred drought and salt tolerance and increased endogenous ABA levels. Consistent with this, faster transcriptional activation of key ABA biosynthetic genes, ZEP, NCED3, and ABA4, was observed in OsRF1-OE plants compared with wild type in response to drought stress. Yeast two-hybrid assay, BiFC, and co-immunoprecipitation analysis identified clade A PP2C proteins as direct interacting partners with OsRF1. In vitro ubiquitination assay indicated that OsRF1 exhibited E3 ligase activity, and that it targeted OsPP2C09 protein for ubiquitination and degradation. Cell-free degradation assay further showed that the OsPP2C09 protein is more rapidly degraded by ABA in the OsRF1-OE rice than in the wild type. The combined results suggested that OsRF1 is a positive player of stress responses by modulating protein stability of clade A PP2C proteins, negative regulators of ABA signaling.

Rice ◽  
2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Dagang Jiang ◽  
Lingyan Zhou ◽  
Weiting Chen ◽  
Nenghui Ye ◽  
Jixing Xia ◽  
...  

Abstract Background The NAC (NAM, AFAT, and CUC) transcription factors play critical roles in rice (Oryza sativa) development and stress regulation. Overexpressing a microRNA (miR164b)-resistant OsNAC2 mutant gene, which generates transcripts that cannot be targeted by miR164b, improves rice plant architecture and yield; however, the performance of these mOsNAC2-overexpressing lines, named ZUOErN3 and ZUOErN4, under abiotic stress conditions such as drought have not yet been fully characterized. Results In this study, we showed that the germination of ZUOErN3 and ZUOErN4 seeds was delayed in comparison with the wild-type (WT) seeds, although the final germination rates of all lines were over 95%. The quantification of the endogenous ABA levels revealed that the germinating mOsNAC2-overexpressing seeds had elevated ABA levels, which resulted in their slower germination. The mOsNAC2-overexpressing plants were significantly more drought tolerance than the WT plants, with the survival rate increasing from 11.2% in the WT to nearly 70% in ZUOErN3 and ZUOErN4 plants after a drought treatment. Salt (NaCl) tolerance was also increased in the ZUOErN3 and ZUOErN4 plants due to significantly increased ABA levels. A reverse transcription quantitative PCR (RT-qPCR) analysis showed a significant increase in the expression of the ABA biosynthesis genes OsNCED1 and OsNCED3 in the mOsNAC2-overexpressing lines, and the expression levels of the stress-responsive genes OsP5CS1, OsLEA3, and OsRab16 were significantly increased in these plants. Moreover, OsNAC2 directly interacted with the promoters of OsLEA3 and OsNCED3 in yeast one-hybrid assays. Conclusions Taken together, our results show that OsNAC2 plays a positive regulatory role in drought and salt tolerance in rice through ABA-mediated pathways.


Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 4903-4903
Author(s):  
Bradley B Brasher ◽  
Eduardo Guillen ◽  
Ivan Tomasic ◽  
Carsten Schwerdtfeger ◽  
Francesco D Melandri

Abstract Double minute 2 protein (Mdm2, Hdm2 in humans) is a RING-finger Ubiquitin E3 Ligase that acts as a major regulator of the tumor suppressor protein p53. Mdm2 inhibits p53 -mediated cell cycle arrest and apoptosis by binding its transcriptional activation domain. The ligase activity of Mdm2 is responsible for the ubiquitination and subsequent proteasomal degradation of p53. Mdm2 also regulates its own intracellular levels by auto-ubiquitination, and can be SUMOylated, which reportedly decreases autoubiquitination activity but increases activity toward p53. Imbalances in the p53 pathway are frequently associated with hematologic disease states. Loss of p53 function is a driving force in leukemia and lymphoma in humans and mice, while increased p53 activity can inhibit hematopoietic stem cell function and contribute to myelodysplasia. Thus, careful control of p53 activity is critical for homeostasis. Most of our understanding of p53 function in hematopoiesis is derived from in vivo experiments using genetically modified mice (Pant V., et al, Blood. 2012; 120:5118-27). While this is a powerful system for elucidating genetic pathways that influence p53 activity, there is still much to learn about the mechanisms of p53 regulation at the enzymatic level. To facilitate studies in this area, we purified recombinant Hdm2 and p53 from E.coli and developed gel-based assays to monitor both autoubiquitination and ubiquitination of protein substrates. We observed rapid autoubiquitination of Hdm2 using both wild-type and lysine-less (K0) ubiquitin, though reactions containing the former generated significantly higher molecular weight Hdm2-ubiquitin adducts. Hdm2 ubiquitination of p53 produced a discrete, ladder-like banding pattern on Western Blots regardless of whether wild-type or K0 ubiquitin was included in the reaction. This suggests that the principal product of this defined Hdm2-p53 reaction is multi-monoubiquitinated p53, as opposed to p53 modified with polyubiquitin chains. Reactions using an alternative substrate yielded different results. Hdm2 ubiquitination of Angiocidin/S5a protein generated a large smeary pattern on Western Blots instead of discrete bands. This is consistent with the Hdm2-catalyzed polyubiquitination of S5a, demonstrating that ubiquitin ligases are capable of generating different in vitro ubiquitination patterns that are dependent on the substrate utilized in the assay. These results suggest that care must be taken in experimental designs, particularly with respect to substrate and assay read out. Finally, recombinant UBE4B was included in Mdm2/p53 reactions to test the recently reported E4-ligase activity of this enzyme. Ultimately these reagents should prove useful for fully defined, in vitro studies investigating the interactions between p53 and the ubiquitin ligases and deubiquitinases that modify it in normal and diseased cellular states. Disclosures: Brasher: Boston Biochem Inc: Employment. Guillen:Boston Biochem Inc: Employment. Tomasic:Boston Biochem Inc: Employment. Schwerdtfeger:Boston Biochem Inc: Employment. Melandri:Boston Biochem Inc: Employment.


2020 ◽  
Vol 117 (32) ◽  
pp. 19245-19253 ◽  
Author(s):  
Soumyadip Sahu ◽  
Zhenzhen Wang ◽  
Xinfu Jiao ◽  
Chunfang Gu ◽  
Nikolaus Jork ◽  
...  

Regulation of enzymatic 5′ decapping of messenger RNA (mRNA), which normally commits transcripts to their destruction, has the capacity to dynamically reshape the transcriptome. For example, protection from 5′ decapping promotes accumulation of mRNAs into processing (P) bodies—membraneless, biomolecular condensates. Such compartmentalization of mRNAs temporarily removes them from the translatable pool; these repressed transcripts are stabilized and stored until P-body dissolution permits transcript reentry into the cytosol. Here, we describe regulation of mRNA stability and P-body dynamics by the inositol pyrophosphate signaling molecule 5-InsP7(5-diphosphoinositol pentakisphosphate). First, we demonstrate 5-InsP7inhibits decapping by recombinant NUDT3 (Nudix [nucleoside diphosphate linked moiety X]-type hydrolase 3) in vitro. Next, in intact HEK293 and HCT116 cells, we monitored the stability of a cadre of NUDT3 mRNA substrates following CRISPR-Cas9 knockout ofPPIP5Ks(diphosphoinositol pentakisphosphate 5-kinases type 1 and 2, i.e.,PPIP5KKO), which elevates cellular 5-InsP7levels by two- to threefold (i.e., within the physiological rheostatic range). ThePPIP5KKO cells exhibited elevated levels of NUDT3 mRNA substrates and increased P-body abundance. Pharmacological and genetic attenuation of 5-InsP7synthesis in the KO background reverted both NUDT3 mRNA substrate levels and P-body counts to those of wild-type cells. Furthermore, liposomal delivery of a metabolically resistant 5-InsP7analog into wild-type cells elevated levels of NUDT3 mRNA substrates and raised P-body abundance. In the context that cellular 5-InsP7levels normally fluctuate in response to changes in the bioenergetic environment, regulation of mRNA structure by this inositol pyrophosphate represents an epitranscriptomic control process. The associated impact on P-body dynamics has relevance to regulation of stem cell differentiation, stress responses, and, potentially, amelioration of neurodegenerative diseases and aging.


2001 ◽  
Vol 21 (24) ◽  
pp. 8565-8574 ◽  
Author(s):  
Anthony J. Greenberg ◽  
Paul Schedl

ABSTRACT The Drosophila melanogaster GAGA factor (encoded by the Trithorax-like [Trl] gene) is required for correct chromatin architecture at diverse chromosomal sites. The Trl gene encodes two alternatively spliced isoforms of the GAGA factor (GAGA-519 and GAGA-581) that are identical except for the length and sequence of the C-terminal glutamine-rich (Q) domain. In vitro and tissue culture experiments failed to find any functional difference between the two isoforms. We made a set of transgenes that constitutively express cDNAs coding for either of the isoforms with the goal of elucidating their roles in vivo. Phenotypic analysis of the transgenes in Trl mutant background led us to the conclusion that GAGA-519 and GAGA-581 perform different, albeit largely overlapping, functions. We also expressed a fusion protein with LacZ disrupting the Q domain of GAGA-519. This LacZ fusion protein compensated for the loss of wild-type GAGA factor to a surprisingly large extent. This suggests that the Q domain either is not required for the essential functions performed by the GAGA protein or is exclusively used for tetramer formation. These results are inconsistent with a major role of the Q domain in chromatin remodeling or transcriptional activation. We also found that GAGA-LacZ was able to associate with sites not normally occupied by the GAGA factor, pointing to a role of the Q domain in binding site choice in vivo.


1999 ◽  
Vol 19 (5) ◽  
pp. 3257-3266 ◽  
Author(s):  
Xiaoya Zeng ◽  
Lihong Chen ◽  
Christine A. Jost ◽  
Ruth Maya ◽  
David Keller ◽  
...  

ABSTRACT The newly identified p53 homolog p73 can mimic the transcriptional activation function of p53. We investigated whether p73, like p53, participates in an autoregulatory feedback loop with MDM2. p73 bound to MDM2 both in vivo and in vitro. Wild-type but not mutant MDM2, expressed in human p53 null osteosarcoma Saos-2 cells, inhibited p73- and p53-dependent transcription driven by the MDM2 promoter-derived p53RE motif as measured in transient-transfection and chloramphenicol acetyltransferase assays and also inhibited p73-induced apoptosis in p53-null human lung adenocarcinoma H1299 cells. MDM2 did not promote the degradation of p73 but instead disrupted the interaction of p73, but not of p53, with p300/CBP by competing with p73 for binding to the p300/CBP N terminus. Both p73α and p73β stimulated the expression of the endogenous MDM2 protein. Hence, MDM2 is transcriptionally activated by p73 and, in turn, negatively regulates the function of this activator through a mechanism distinct from that used for p53 inactivation.


2000 ◽  
Vol 20 (5) ◽  
pp. 1616-1625 ◽  
Author(s):  
Yang Chen ◽  
R. H. Goodman ◽  
Sarah M. Smolik

ABSTRACT CREB-binding protein (CBP) serves as a transcriptional coactivator in multiple signal transduction pathways. The Drosophilahomologue of CBP, dCBP, interacts with the transcription factors Cubitus interruptus (CI), MAD, and Dorsal (DL) and functions as a coactivator in several signaling pathways during Drosophiladevelopment, including the hedgehog (hh),decapentaplegic (dpp), and Tollpathways. Although dCBP is required for the expression of thehh target genes, wingless (wg) andpatched (ptc) in vivo, and potentiatesci-mediated transcriptional activation in vitro, it is not known that ci absolutely requires dCBP for its activity. We used a yeast genetic screen to identify several ci point mutations that disrupt CI-dCBP interactions. These mutant proteins are unable to transactivate a reporter gene regulated by cibinding sites and have a lower dCBP-stimulated activity than wild-type CI. When expressed exogenously in embryos, the CI point mutants cannot activate endogenous wg expression. Furthermore, a CI mutant protein that lacks the entire dCBP interaction domain functions as a negative competitor for wild-type CI activity, and the expression of dCBP antisense RNAs can suppress CI transactivation in Kc cells. Taken together, our data suggest that dCBP function is necessary forci-mediated transactivation of wg duringDrosophila embryogenesis.


2005 ◽  
Vol 25 (9) ◽  
pp. 3461-3474 ◽  
Author(s):  
Hongfang Qiu ◽  
Cuihua Hu ◽  
Fan Zhang ◽  
Gwo Jiunn Hwang ◽  
Mark J. Swanson ◽  
...  

ABSTRACT Transcriptional activation by Gcn4p is enhanced by the coactivators SWI/SNF, SAGA, and Srb mediator, which stimulate recruitment of TATA binding protein (TBP) and polymerase II to target promoters. We show that wild-type recruitment of SAGA by Gcn4p is dependent on mediator but independent of SWI/SNF function at three different promoters. Recruitment of mediator is also independent of SWI/SNF but is enhanced by SAGA at a subset of Gcn4p target genes. Recruitment of all three coactivators to ARG1 is independent of the TATA element and preinitiation complex formation, whereas efficient recruitment of the general transcription factors requires the TATA box. We propose an activation pathway involving interdependent recruitment of SAGA and Srb mediator to the upstream activation sequence, enabling SWI/SNF recruitment and the binding of TBP and other general factors to the promoter. We also found that high-level recruitment of Tra1p and other SAGA subunits is independent of the Ada2p/Ada3p/Gcn5p histone acetyltransferase module but requires Spt3p in addition to subunits required for SAGA integrity. Thus, while Tra1p can bind directly to Gcn4p in vitro, it requires other SAGA subunits for efficient recruitment in vivo.


2001 ◽  
Vol 183 (7) ◽  
pp. 2259-2264 ◽  
Author(s):  
Yan Wei ◽  
Amy C. Vollmer ◽  
Robert A. LaRossa

ABSTRACT Mitomycin C (MMC), a DNA-damaging agent, is a potent inducer of the bacterial SOS response; surprisingly, it has not been used to select resistant mutants from wild-type Escherichia coli. MMC resistance is caused by the presence of any of four distinctE. coli genes (mdfA, gyrl, rob, andsdiA) on high-copy-number vectors. mdfAencodes a membrane efflux pump whose overexpression results in broad-spectrum chemical resistance. The gyrI (also called sbmC) gene product inhibits DNA gyrase activity in vitro, while the rob protein appears to function in transcriptional activation of efflux pumps. SdiA is a transcriptional activator of ftsQAZ genes involved in cell division.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 3789-3789
Author(s):  
Yasuhito Terui ◽  
Ryoko Kuniyoshi ◽  
Yuji Mishima ◽  
Yuko Mishima ◽  
Kiyohiko Hatake

Abstract Abstract 3789 Poster Board III-725 [Background] Imatinib mesylate is effective therapy against Philadelphia chromosome-positive leukemia, but the resistance develops in all phases of the disease. The identification of new proteins induced by imatinib may lead to find the novel potent molecular targets in imatinib-resistant CML. [Methods] K562 cells were treated with or without 1 mM imatinib for 24 hours, and then differential display between them was performed. TRIM68 expression was examined by RT-PCR, and in vivo ubiquitination or sumoylation assay was performed by transfection experiment and Western blot analysis. The substrates for TRIM68 were analyzed by mass spectorometry. [Results] As the results of RNA differential display, we found that the expression of TRIM68 mRNA was increased when the K562 cells were treated with 1 mM imatinib for 24 hours. TRIM68 protein possesses a RING finger domain at its N-terminal site. Since many RING-finger proteins have been identified as E3 ligases for ubiquitination or sumoylation (Meroni G, Diez-Roux G. TRIM/RBCC, a novel class of esingle protein RING finger' E3 ubiquitin ligases. Bioessays 2005; 27: 1147-57.), we examined whether TRIM68 functions as an E3 ligase for ubiquitination or sumoylation. To examine the function of TRIM68 as an E3 ligase, wild type TRIM68 and a RING domain deletion mutant of TRIM68 (TRIM68/¢R) genes were constructed into a mammalian expression vector and they were transfected into MCF7 cells. TRIM68 had auto-ubiquitination activity but not auto-sumoylation activity on the in vivo assays, suggesting that TRIM68 can be an ubiquitin E3 ligase but not sumo ligase. Moreover, wild type TRIM68 promoted the whole ubiqutination in the cells, whereas TRIM68/¢R prevented the ubiquitination inside of the cells. To identify the TRIM68-interacting proteins, we transfected FLAG-tagged wild type TRIM68 gene or B30.2/SPRY domain of TRIM68 gene into MCF7 cells, and immunoprecipitation with FLAG-M2 agarose was performed and mass spectrometric analysis was performed. As the results, we revealed that the members of molecular chaperone T-complex polypeptide 1 (TCP-1) complex, TCP-1 b and heat shock protein 70 (HSP70) interacted with TRIM68 at the B30.2/SPRY domain. Then, we examined whether TCP-1 b is one of the substrates for TRIM68-related ubiqutination. TCP-1 b was ubiquitinated by wild type TRIM68, but not by TRIM68/¢R. Furthermore, the ubiquitination of TCP-1 b was accumulated by the treatment with a proteasome inhibitor MG132. These suggested that TCP-1 b is one of the substrates for TRIM68. [Conclusions] We found that TRIM68 is induced by the treatment with imatinib and functions as an ubiquitin E3 ligase. Furthermore, we identified that TCP-1 b is a substrate of TRIM68. TRIM68 may inhibit the function of TCP-1 b as a chaperone by ubiquitination and proteasome-mediated degradation. TRIM68 is possible for a new target in the imatinib-resistant CML. Disclosures: No relevant conflicts of interest to declare.


1996 ◽  
Vol 16 (10) ◽  
pp. 5527-5535 ◽  
Author(s):  
K J Cohen ◽  
J S Hanna ◽  
J E Prescott ◽  
C V Dang

The bmi-1 oncogene cooperates with c-myc in transgenic mice, resulting in accelerated lymphoma development. Altering the expression of Bmi-1 affects normal embryogenesis. The protein product of bmi-1 is homologous to certain Drosophila Polycomb group proteins that regulate homeotic gene expression through alteration of chromatin structure. Chimeric LexA-Bmi-1 protein has previously been shown to repress transcription. How Bmi-1 functions in embryogenesis and whether this relates to the ability of Bmi-1 to mediate cellular transformation is unknown. We demonstrate here that Bmi-1 is able to transform rodent fibroblasts in vitro, providing a system that has allowed us to correlate its molecular properties with its ability to transform cells. We map functional domains of Bmi-1 involved in transcriptional suppression by using the GAL4 chimeric transcriptional regulator system. Deletion analysis shows that the centrally located helix-turn-helix-turn-helix-turn (HTHTHT) motif is necessary for transcriptional suppression whereas the N-terminal RING finger domain is not required. We demonstrate that nuclear localization requires KRMK (residues 230 to 233) and that the absence of nuclear entry ablates transformation. In addition, we find that the subnuclear localization of wild-type Bmi-1 to the rim of the nucleus requires the RING finger domain and correlates with its ability to transform. Our studies with Bmi-1 deletion mutants suggest that the ability of Bmi-1 to mediate cellular transformation correlates with its unique subnuclear localization but not its transcriptional suppression activity.


Sign in / Sign up

Export Citation Format

Share Document