scholarly journals Hot Spots and Climate Trends of Meteorological Droughts in Europe–Assessing the Percent of Normal Index in a Single-Model Initial-Condition Large Ensemble

2021 ◽  
Vol 3 ◽  
Author(s):  
Andrea Böhnisch ◽  
Magdalena Mittermeier ◽  
Martin Leduc ◽  
Ralf Ludwig

Drought, caused by a prolonged deficit of precipitation, bears the risk of severe economic and ecological consequences for affected societies. The occurrence of this significant hydro-meteorological hazard is expected to strongly increase in many regions due to climate change, however, it is also subject to high internal climate variability. This calls for an assessment of climate trends and hot spots that considers the variations due to internal variability. In this study, the percent of normal index (PNI), an index that describes meteorological droughts by the deviation of a long-term reference mean, is analyzed in a single-model initial-condition large ensemble (SMILE) of the Canadian regional climate model version 5 (CRCM5) over Europe. A far future horizon under the Representative Concentration Pathway 8.5 is compared to the present-day climate and a pre-industrial reference, which is derived from pi-control runs of the CRCM5 representing a counterfactual world without anthropogenic climate change. Our analysis of the SMILE reveals a high internal variability of drought occurrence over Europe. Considering the high internal variability, our results show a clear overall increase in the duration, number and intensity of droughts toward the far future horizon. We furthermore find a strong seasonal divergence with a distinct increase in summer droughts and a decrease in winter droughts in most regions. Additionally, the percentage of summer droughts followed by wet winters is increasing in all regions except for the Iberian Peninsula. Because of particularly severe drying trends, the Alps, the Mediterranean, France and the Iberian Peninsula are suggested to be considered as drought hot spots. Due to the simplicity and intuitivity of the PNI, our results derived from this index are particularly appropriate for region-specific communication purposes and outreach.

2019 ◽  
Author(s):  
Anna Louise Merrifield ◽  
Lukas Brunner ◽  
Ruth Lorenz ◽  
Reto Knutti

Abstract. Multi-model ensembles can be used to estimate uncertainty in projections of regional climate, but this uncertainty often depends on the constituents of the ensemble. The dependence of uncertainty on ensemble composition is clear when single model initial condition large ensembles (SMILEs) are included within a multi-model ensemble. SMILEs introduce new information into a multi-model ensemble by representing region-scale internal variability, but also introduce redundant information, by virtue of a single model being represented by 50–100 outcomes. To preserve the contribution of internal variability and ensure redundancy does not overwhelm uncertainty estimates, a weighting approach is used to incorporate 50-members of the Community Earth System Model (CESM1.2.2), 50-members of the Canadian Earth System Model (CanESM2), and 100-members of the MPI Grand Ensemble (MPI-GE) into an 88-member Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble. The weight assigned to each multi-model ensemble member is based on the member's ability to reproduce observed climate (performance) and scaled by a measure of redundancy (dependence). Surface air temperature (SAT) and sea level pressure (SLP) diagnostics are used to determine the weights, and relationships between present and future diagnostic behavior are discussed. A new diagnostic, estimated forced trend, is proposed to replace a diagnostic with no clear emergent relationship, 50-year regional SAT trend. The influence of the weighting is assessed in estimates of Northern European winter and Mediterranean summer end-of-century warming in the CMIP5 and combined SMILE-CMIP5 multi-model ensembles. The weighting is shown to recover uncertainty obscured by SMILE redundancy, notably in Mediterranean summer. For each SMILE, the independence weight of each ensemble member as a function of the number of SMILE members included in the CMIP5 ensemble is assessed. The independence weight increases linearly with added members with a slope that depends on SMILE, region, and season. Finally, it is shown that the weighting method can be used to guide SMILE member selection if a subsetted ensemble with one member per model is sought. The weight a SMILE receives within a subsetted ensemble depends on which member is used to represent it, reinforcing the advantage of weighting and incorporating all initial condition ensemble members in multi-model ensembles.


2020 ◽  
Author(s):  
Raul R. Wood ◽  
Flavio Lehner ◽  
Angeline Pendergrass ◽  
Sarah Schlunegger ◽  
Keith Rodgers

<p>Identifying anthropogenic influences on climate amidst the “noise” of internal climate variability is a central challenge for the climate research community. In recent years, several modeling groups have produced single-model initial-condition large ensembles (SMILE) to analyze the interplay of the forced climate change and internal climate variability under current and future climate conditions. These simulations help to improve our understanding of climate variability, including extreme events, and can be employed as test-beds for statistical approaches to separate forced and internal components of climate variability.</p><p>So far, most studies have focused on either an individual or a  limited number of SMILEs. In this work we compare seven large ensembles to disentangle the influence of internal variability and model response uncertainty for multiple precipitation indices (e.g. wettest day of the year, precipitation with a return period of 20 years). What can we learn from intercomparison of SMILEs, how similar are they in terms of spatial patterns and forced response, and what if they aren’t? How does the forced response of an ensemble of SMILEs compare to the CMIP5 multi-model ensemble? By assessing multiple SMILEs we can identify robust signals for regional and global precipitation properties and revealing anthropogenic responses that are inherent to our current representations of the Earth system.</p>


2020 ◽  
Author(s):  
Anna Merrifield ◽  
Lukas Brunner ◽  
Ruth Lorenz ◽  
Reto Knutti

<p>Multi-model ensembles can be used to estimate uncertainty in projections of regional climate, but this uncertainty often depends on the constituents of the ensemble. The dependence of uncertainty on ensemble composition is clear when single model initial condition large ensembles (SMILEs) are included within a multi-model ensemble. SMILEs introduce new information into a multi-model ensemble by representing region-scale internal variability, but also introduce redundant information, by virtue of a single model being represented by 50–100 outcomes. To preserve the contribution of internal variability and ensure redundancy does not overwhelm uncertainty estimates, a weighting approach is used to incorporate 50-members of the Community Earth System Model (CESM1.2.2), 50-members of the Canadian Earth System Model (CanESM2), and 100-members of the MPI Grand Ensemble (MPI-GE) into an 88-member Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model ensemble. The weight assigned to each multi-model ensemble member is based on the member's ability to reproduce observed climate (performance) and scaled by a measure of historical redundancy (dependence). Surface air temperature (SAT) and sea level pressure (SLP) diagnostics are used to determine the weights, and relationships between present and future diagnostic behavior are discussed. A new diagnostic, estimated forced trend, is proposed to replace a diagnostic with no clear emergent relationship, 50-year regional SAT trend.</p><p>The influence of the weighting is assessed in estimates of Northern European winter and Mediterranean summer end-of-century warming in the CMIP5 and combined SMILE-CMIP5 multi-model ensembles. The weighting is shown to recover uncertainty obscured by SMILE redundancy, notably in Mediterranean summer. For each SMILE, the independence weight of each ensemble member as a function of the number of SMILE members included in the CMIP5 ensemble is assessed. The independence weight increases linearly with added members with a slope that depends on SMILE, region, and season. Finally, it is shown that the weighting method can be used to guide SMILE member selection if a subsetted ensemble with one member per model is sought. The weight a SMILE receives within a subsetted ensemble depends on which member is used to represent it, reinforcing the advantage of weighting and incorporating all initial condition ensemble members in multi-model ensembles.</p>


2015 ◽  
Vol 28 (16) ◽  
pp. 6443-6456 ◽  
Author(s):  
David W. J. Thompson ◽  
Elizabeth A. Barnes ◽  
Clara Deser ◽  
William E. Foust ◽  
Adam S. Phillips

Abstract Internal variability in the climate system gives rise to large uncertainty in projections of future climate. The uncertainty in future climate due to internal climate variability can be estimated from large ensembles of climate change simulations in which the experiment setup is the same from one ensemble member to the next but for small perturbations in the initial atmospheric state. However, large ensembles are invariably computationally expensive and susceptible to model bias. Here the authors outline an alternative approach for assessing the role of internal variability in future climate based on a simple analytic model and the statistics of the unforced climate variability. The analytic model is derived from the standard error of the regression and assumes that the statistics of the internal variability are roughly Gaussian and stationary in time. When applied to the statistics of an unforced control simulation, the analytic model provides a remarkably robust estimate of the uncertainty in future climate indicated by a large ensemble of climate change simulations. To the extent that observations can be used to estimate the amplitude of internal climate variability, it is argued that the uncertainty in future climate trends due to internal variability can be robustly estimated from the statistics of the observed climate.


2020 ◽  
Vol 11 (3) ◽  
pp. 807-834 ◽  
Author(s):  
Anna Louise Merrifield ◽  
Lukas Brunner ◽  
Ruth Lorenz ◽  
Iselin Medhaug ◽  
Reto Knutti

Abstract. Multi-model ensembles can be used to estimate uncertainty in projections of regional climate, but this uncertainty often depends on the constituents of the ensemble. The dependence of uncertainty on ensemble composition is clear when single-model initial condition large ensembles (SMILEs) are included within a multi-model ensemble. SMILEs allow for the quantification of internal variability, a non-negligible component of uncertainty on regional scales, but may also serve to inappropriately narrow uncertainty by giving a single model many additional votes. In advance of the mixed multi-model, the SMILE Coupled Model Intercomparison version 6 (CMIP6) ensemble, we investigate weighting approaches to incorporate 50 members of the Community Earth System Model (CESM1.2.2-LE), 50 members of the Canadian Earth System Model (CanESM2-LE), and 100 members of the MPI Grand Ensemble (MPI-GE) into an 88-member Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble. The weights assigned are based on ability to reproduce observed climate (performance) and scaled by a measure of redundancy (dependence). Surface air temperature (SAT) and sea level pressure (SLP) predictors are used to determine the weights, and relationships between present and future predictor behavior are discussed. The estimated residual thermodynamic trend is proposed as an alternative predictor to replace 50-year regional SAT trends, which are more susceptible to internal variability. Uncertainty in estimates of northern European winter and Mediterranean summer end-of-century warming is assessed in a CMIP5 and a combined SMILE–CMIP5 multi-model ensemble. Five different weighting strategies to account for the mix of initial condition (IC) ensemble members and individually represented models within the multi-model ensemble are considered. Allowing all multi-model ensemble members to receive either equal weight or solely a performance weight (based on the root mean square error (RMSE) between members and observations over nine predictors) is shown to lead to uncertainty estimates that are dominated by the presence of SMILEs. A more suitable approach includes a dependence assumption, scaling either by 1∕N, the number of constituents representing a “model”, or by the same RMSE distance metric used to define model performance. SMILE contributions to the weighted ensemble are smallest (<10 %) when a model is defined as an IC ensemble and increase slightly (<20 %) when the definition of a model expands to include members from the same institution and/or development stream. SMILE contributions increase further when dependence is defined by RMSE (over nine predictors) amongst members because RMSEs between SMILE members can be as large as RMSEs between SMILE members and other models. We find that an alternative RMSE distance metric, derived from global SAT and hemispheric SLP climatology, is able to better identify IC members in general and SMILE members in particular as members of the same model. Further, more subtle dependencies associated with resolution differences and component similarities are also identified by the global predictor set.


2014 ◽  
Vol 27 (6) ◽  
pp. 2271-2296 ◽  
Author(s):  
Clara Deser ◽  
Adam S. Phillips ◽  
Michael A. Alexander ◽  
Brian V. Smoliak

Abstract This study highlights the relative importance of internally generated versus externally forced climate trends over the next 50 yr (2010–60) at local and regional scales over North America in two global coupled model ensembles. Both ensembles contain large numbers of integrations (17 and 40): each of which is subject to identical anthropogenic radiative forcing (e.g., greenhouse gas increase) but begins from a slightly different initial atmospheric state. Thus, the diversity of projected climate trends within each model ensemble is due solely to intrinsic, unpredictable variability of the climate system. Both model ensembles show that natural climate variability superimposed upon forced climate change will result in a range of possible future trends for surface air temperature and precipitation over the next 50 yr. Precipitation trends are particularly subject to uncertainty as a result of internal variability, with signal-to-noise ratios less than 2. Intrinsic atmospheric circulation variability is mainly responsible for the spread in future climate trends, imparting regional coherence to the internally driven air temperature and precipitation trends. The results underscore the importance of conducting a large number of climate change projections with a given model, as each realization will contain a different superposition of unforced and forced trends. Such initial-condition ensembles are also needed to determine the anthropogenic climate response at local and regional scales and provide a new perspective on how to usefully compare climate change projections across models.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Water ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 1870
Author(s):  
Matteo Gentilucci ◽  
Abdelraouf A. Moustafa ◽  
Fagr Kh. Abdel-Gawad ◽  
Samira R. Mansour ◽  
Maria Rosaria Coppola ◽  
...  

This paper characterizes non-indigenous fish species (NIS) and analyses both atmospheric and sea surface temperatures for the Mediterranean coast of Egypt from 1991 to 2020, in relation to previous reports in the same areas. Taxonomical characterization depicts 47 NIS from the Suez Canal (Lessepsian/alien) and 5 from the Atlantic provenance. GenBank accession number of the NIS mitochondrial gene, cytochrome oxidase 1, reproductive and commercial biodata, and a schematic Inkscape drawing for the most harmful Lessepsian species were reported. For sea surface temperatures (SST), an increase of 1.2 °C to 1.6 °C was observed using GIS software. The lack of linear correlation between annual air temperature and annual SST at the same detection points (Pearson r) could suggest a difference in submarine currents, whereas the Pettitt homogeneity test highlights a temperature breakpoint in 2005–2006 that may have favoured the settlement of non-indigenous fauna in the coastal sites of Damiette, El Arish, El Hammam, Alexandria, El Alamain, and Mersa Matruh, while there seems to be a breakpoint present in 2001 for El Sallum. This assessment of climate trends is in good agreement with the previous sightings of non-native fish species. New insights into the assessment of Egyptian coastal climate change are discussed.


Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Virgílio A. Bento ◽  
Andreia F. S. Ribeiro ◽  
Ana Russo ◽  
Célia M. Gouveia ◽  
Rita M. Cardoso ◽  
...  

AbstractThe impact of climate change on wheat and barley yields in two regions of the Iberian Peninsula is here examined. Regression models are developed by using EURO-CORDEX regional climate model (RCM) simulations, forced by ERA-Interim, with monthly maximum and minimum air temperatures and monthly accumulated precipitation as predictors. Additionally, RCM simulations forced by different global climate models for the historical period (1972–2000) and mid-of-century (2042–2070; under the two emission scenarios RCP4.5 and RCP8.5) are analysed. Results point to different regional responses of wheat and barley. In the southernmost regions, results indicate that the main yield driver is spring maximum temperature, while further north a larger dependence on spring precipitation and early winter maximum temperature is observed. Climate change seems to induce severe yield losses in the southern region, mainly due to an increase in spring maximum temperature. On the contrary, a yield increase is projected in the northern regions, with the main driver being early winter warming that stimulates earlier growth. These results warn on the need to implement sustainable agriculture policies, and on the necessity of regional adaptation strategies.


Sign in / Sign up

Export Citation Format

Share Document