scholarly journals The Peak Absorbance Wavelength of Photosynthetic Pigments Around Other Stars From Spectral Optimization

Author(s):  
Owen R. Lehmer ◽  
David C. Catling ◽  
Mary N. Parenteau ◽  
Nancy Y. Kiang ◽  
Tori M. Hoehler

In the search for life on other planets, the presence of photosynthetic surface vegetation may be detectable from the colors of light it reflects. On the modern Earth, this spectral reflectance is characterized by a steep increase in reflectance between the red and near‐infrared wavelengths, a signature known as the “red edge”. This edge-like signature occurs at wavelengths of peak photon absorbance, which are the result of adaptations of the phototroph to their spectral environment. On planets orbiting different stellar types, red edge analogs may occur at other colors than red. Thus, knowing the wavelengths at which photosynthetic organisms preferentially absorb and reflect photons is necessary to detect red edge analogs on other planets. Using a numerical model that predicts the absorbance spectrum of extant photosynthetic pigments on Earth from Marosvölgyi and van Gorkom (2010), we calculate the absorbance spectrum for pigments on an Earth-like planet around F through late M type stars that are adapted for maximal energy production. In this model, cellular energy production is maximized when pigments are tuned to absorb at the wavelength that maximizes energy input from incident photons while minimizing energy losses due to thermal emission and building cellular photosynthetic apparatus. We find that peak photon absorption for photosynthetic organisms around F type stars tends to be in the blue while for G, K, and early M type stars, red or just beyond is preferred. Around the coolest M type stars, these organisms may preferentially absorb in the near-infrared, possibly past one micron. These predictions are consistent with previous, qualitative estimates of pigment absorptance. Our predicted absorbance spectra for photosynthetic surface organisms depend on both the stellar type and planetary atmospheric composition, especially atmospheric water vapor concentrations, which alter the availability of surface photons and thus the predicted pigment absorption. By constraining the absorbance spectra of alien, photosynthetic organisms, future observations may be better equipped to detect the weak spectral signal of red edge analogs.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Giovanni Bittante ◽  
Simone Savoia ◽  
Alessio Cecchinato ◽  
Sara Pegolo ◽  
Andrea Albera

AbstractSpectroscopic predictions can be used for the genetic improvement of meat quality traits in cattle. No information is however available on the genetics of meat absorbance spectra. This research investigated the phenotypic variation and the heritability of meat absorbance spectra at individual wavelengths in the ultraviolet–visible and near-infrared region (UV–Vis-NIR) obtained with portable spectrometers. Five spectra per instrument were taken on the ribeye surface of 1185 Piemontese young bulls from 93 farms (13,182 Herd-Book pedigree relatives). Linear animal model analyses of 1481 single-wavelengths from UV–Vis-NIRS and 125 from Micro-NIRS were carried out separately. In the overlapping regions, the proportions of phenotypic variance explained by batch/date of slaughter (14 ± 6% and 17 ± 7%,), rearing farm (6 ± 2% and 5 ± 3%), and the residual variances (72 ± 10% and 72 ± 5%) were similar for the UV–Vis-NIRS and Micro-NIRS, but additive genetics (7 ± 2% and 4 ± 2%) and heritability (8.3 ± 2.3% vs 5.1 ± 0.6%) were greater with the Micro-NIRS. Heritability was much greater for the visible fraction (25.2 ± 11.4%), especially the violet, blue and green colors, than for the NIR fraction (5.0 ± 8.0%). These results allow a better understanding of the possibility of using the absorbance of visible and infrared wavelengths correlated with meat quality traits for the genetic improvement in beef cattle.


2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Petri K. E. Pellikka

Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 505
Author(s):  
Gregoriy Kaplan ◽  
Offer Rozenstein

Satellite remote sensing is a useful tool for estimating crop variables, particularly Leaf Area Index (LAI), which plays a pivotal role in monitoring crop development. The goal of this study was to identify the optimal Sentinel-2 bands for LAI estimation and to derive Vegetation Indices (VI) that are well correlated with LAI. Linear regression models between time series of Sentinel-2 imagery and field-measured LAI showed that Sentinel-2 Band-8A—Narrow Near InfraRed (NIR) is more accurate for LAI estimation than the traditionally used Band-8 (NIR). Band-5 (Red edge-1) showed the lowest performance out of all red edge bands in tomato and cotton. A novel finding was that Band 9 (Water vapor) showed a very high correlation with LAI. Bands 1, 2, 3, 4, 5, 11, and 12 were saturated at LAI ≈ 3 in cotton and tomato. Bands 6, 7, 8, 8A, and 9 were not saturated at high LAI values in cotton and tomato. The tomato, cotton, and wheat LAI estimation performance of ReNDVI (R2 = 0.79, 0.98, 0.83, respectively) and two new VIs (WEVI (Water vapor red Edge Vegetation Index) (R2 = 0.81, 0.96, 0.71, respectively) and WNEVI (Water vapor narrow NIR red Edge Vegetation index) (R2 = 0.79, 0.98, 0.79, respectively)) were higher than the LAI estimation performance of the commonly used NDVI (R2 = 0.66, 0.83, 0.05, respectively) and other common VIs tested in this study. Consequently, reNDVI, WEVI, and WNEVI can facilitate more accurate agricultural monitoring than traditional VIs.


2013 ◽  
Vol 15 (20) ◽  
pp. 7666 ◽  
Author(s):  
Honghua Hu ◽  
Olga V. Przhonska ◽  
Francesca Terenziani ◽  
Anna Painelli ◽  
Dmitry Fishman ◽  
...  

1997 ◽  
Vol 5 (3) ◽  
pp. 167-173 ◽  
Author(s):  
Christine A. Hlavka ◽  
David L. Peterson ◽  
Lee F. Johnson ◽  
Barry Ganapol

Wet chemical measurements and near infrared spectra of dry ground leaf samples were analysed to test a multivariate regression technique for estimating component spectra. The technique is based on a linear mixture model for log(1/ R) pseudoabsorbance derived from diffuse reflectance measurements. The resulting unmixed spectra for carbohydrates, lignin and protein resemble the spectra of extracted plant carbohydrates, lignin and protein. The unmixed protein spectrum has prominent absorption peaks at wavelengths that have been associated with nitrogen bonds. It therefore appears feasible to incorporate the linear mixture model in whole leaf models of photon absorption and scattering so that effects of varying nitrogen and carbon concentration on leaf reflectance may be simulated.


2021 ◽  
Author(s):  
WEN-SHUO KUO ◽  
Chia-Yuan Chang ◽  
Ping-Ching Wu ◽  
Jiu-Yao Wang

Abstract BackgroundNitrogen doping and amino-group functionalization, which result in strong electron donation, can be achieved through chemical modification. Large π-conjugated systems of graphene quantum dot (GQD)-based materials acting as electron donors can be chemically manipulated with low two-photon excitation energy in a short photoexcitation time for improving the charge transfer efficiency of sorted nitrogen-doped amino acid–functionalized GQDs (sorted amino-N-GQDs). ResultsIn this study, a self-developed femtosecond Ti-sapphire laser optical system (222.7 nJ pixel−1 with 100-170 scans, approximately 0.65-1.11 s of total effective exposure times; excitation wavelength: 960 nm in the near-infrared II region) was used for chemical modification. The sorted amino-N-GQDs exhibited enhanced two-photon absorption, post-two-photon excitation stability, two-photon excitation cross-section, and two-photon luminescence through the radiative pathway. The lifetime and quantum yield of the sorted amino-N-GQDs decreased and increased, respectively. Furthermore, the sorted amino-N-GQDs exhibited excitation-wavelength-independent photoluminescence in the near-infrared region and generated reactive oxygen species after two-photon excitation. An increase in the size of the sorted amino-N-GQDs boosted photochemical and electrochemical efficacy and resulted in high photoluminescence quantum yield and highly efficient two-photon photodynamic therapy. ConclusionThe sorted dots can be used in two-photon contrast probes for tracking and localizing analytes during two-photon imaging in a biological environment and for conducting two-photon photodynamic therapy for eliminating infectious microbes.


2021 ◽  
Author(s):  
Biswajit Roy ◽  
Rakesh Mengji ◽  
Samrat Roy ◽  
Bipul Pal ◽  
Avijit Jana ◽  
...  

In recent times, organelle-targeted drug delivery systems gained tremendous attention due to the site specific delivery of active drug molecules resulting in enhanced bioefficacy. In this context, the phototriggered drug delivery system (DDS) for releasing an active molecule is superior as it provides spatial and temporal control over the release. So far, near infrared (NIR) light responsive organelle targeted DDS has not yet been developed. Hence, we introduced a two-photon NIR-light responsive lysosome targeted ʽAIE + ESIPTʼ active single component DDS based on naphthalene chromophore. The Two-photon absorption cross-section of our DDS is 142 GM at 850 nm. The DDS was converted into pure organic nanoparticles for biological applications. Our nano-DDS is capable of selective targeting, AIE-luminogenic imaging, and drug release within the lysosome. In vitro studies using cancerous cell lines showed that our single component photoresponsive nanocarrier exhibited enhanced cytotoxicity and real-time monitoring ability of the drug release.


1994 ◽  
Vol 2 (2) ◽  
pp. 59-65 ◽  
Author(s):  
J. Todd Kuenstner ◽  
Karl H. Norris

Absorbance and first and second derivative absorbance spectra and quarter-millimolar absorptivity coefficients for hemoglobin species including oxy-, deoxy-, carboxy- and methemoglobin in the visible and in the near infrared regions from 620 nm to 2500 nm are presented. At wavelengths longer than 1500 nm, the absorbance and second derivative absorbance spectra of hemoglobin species are similar for all of the species. Absorption bands are present centred at 1690, 1740, 2056, 2170, 2290 and 2350 nm.


RSC Advances ◽  
2017 ◽  
Vol 7 (85) ◽  
pp. 53785-53796 ◽  
Author(s):  
Gang Zhao ◽  
Yan Feng ◽  
Shanyi Guang ◽  
Hongyao Xu ◽  
Naibo Lin ◽  
...  

The incorporation of styryl/stilbene–fluorene into polyacetylenes not only endowed the polymers with novel near-infrared optical limiting properties based on a two-photon absorption mechanism but good solubility and high thermal stability.


2018 ◽  
Vol 36 (1) ◽  
pp. 253-264 ◽  
Author(s):  
Gabriel Augusto Giongo ◽  
José Valentin Bageston ◽  
Paulo Prado Batista ◽  
Cristiano Max Wrasse ◽  
Gabriela Dornelles Bittencourt ◽  
...  

Abstract. The main goals of this work are to characterize and investigate the potential wave sources of four mesospheric fronts identified in the hydroxyl near-infrared (OH-NIR) airglow images, obtained with an all-sky airglow imager installed at Comandante Ferraz Antarctic Station (EACF, as per its Portuguese acronym) located on King George Island in the Antarctic Peninsula. We identified and analyzed four mesospheric fronts in 2011 over King George Island. In addition, we investigate the atmospheric background environment between 80 and 100 km altitude and discuss the ducts and propagation conditions for these waves. For that, we used wind data obtained from a meteor radar operated at EACF and temperature data obtained from the TIMED/SABER satellite. The vertical wavenumber squared, m2, was calculated for each of the four waves. Even though no clearly defined duct (indicated by positive values of m2 sandwiched between layers above and below with m2  < 0) was found in any of the events, favorable propagation conditions for horizontal propagation of the fronts were found in three cases. In the fourth case, the wave front did not find any duct support and it appeared to dissipate near the zenith, transferring energy and momentum to the medium and, consequently, accelerating the wind in the wave propagation direction (near to south) above the OH peak (88–92 km). The likely wave sources for these four cases were investigated by using meteorological satellite images and in two cases we could find that strong instabilities were potential sources, i.e., a cyclonic activity and a large convective cloud cell. In the other two cases it was not possible to associate troposphere sources as potential candidates for the generation of such wave fronts observed in the mesosphere and secondary wave sources were attributed to these cases. Keywords. Atmospheric composition and structure (airglow and aurora) – meteorology and atmospheric dynamics (middle atmosphere dynamics; waves and tides)


Sign in / Sign up

Export Citation Format

Share Document