scholarly journals Survival Analysis of Training Methodologies and Other Risk Factors for Musculoskeletal Injury in 2-Year-Old Thoroughbred Racehorses in Queensland, Australia

2021 ◽  
Vol 8 ◽  
Author(s):  
Kylie L. Crawford ◽  
Anna Finnane ◽  
Ristan M. Greer ◽  
Tamsin S. Barnes ◽  
Clive J. C. Phillips ◽  
...  

Musculoskeletal injuries remain a global problem for the Thoroughbred racing industry and there is conflicting evidence regarding the effect of age on the incidence of injuries. The ideal time to commence race training is strongly debated, with limited supporting literature. There is also conflicting evidence regarding the effect of high-speed exercise on musculoskeletal injuries. There is a strong interest in developing training and management strategies to reduce the frequency of injuries. The types of musculoskeletal injuries vary between 2-year-old and older horses, with dorsal metacarpal disease the most common injury in 2-year-old horses. It is likely that risk factors for injury in 2-year-old horses are different than those for older horses. It is also likely that the risk factors may vary between types of injury. This study aimed to determine the risk factors for musculoskeletal injuries and dorsal metacarpal disease. We report the findings of a large scale, prospective observational study of 2-year-old horses in Queensland, Australia. Data were collected weekly for 56-weeks, from 26 trainers, involving 535 2-year-old Thoroughbred racehorses, 1, 258 training preparations and 7, 512-weeks of exercise data. A causal approach was used to develop our statistical models, to build on the existing literature surrounding injury risk, by incorporating the previously established causal links into our analyses. Where previous data were not available, industry experts were consulted. Survival analyses were performed using Cox proportional hazards or Weibull regression models. Analysis of musculoskeletal injuries overall revealed the hazard was reduced with increased exposure to high-speed exercise [Hazard ratio (HR) 0.89, 95% Confidence Interval (CI) 0.84, 0.94, p < 0.001], increased number of training preparations (HR 0.58, 95% CI 0.50, 0.67, p < 0.001), increased rest before the training preparation (HR 0.89, 95% CI 0.83, 0.96, p = 0.003) and increased dam parity (HR 0.86, 95% CI 0.77, 0.97, p = 0.01). The hazard of injury was increased with increasing age that training commenced (HR 1.13, 95% CI 1.06, 1.19, p < 0.001). Analyses were then repeated with the outcome of interest dorsal metacarpal disease. Factors that were protective against dorsal metacarpal disease and musculoskeletal injuries overall included: increased total cumulative distance (HR 0.89, 95% CI 0.82, 0.97, p = 0.001) and total cumulative days exercised as a gallop (HR 0.96, 95% CI 0.92, 0.99, p = 0.03), the number of the training preparations (HR 0.43, 95% CI 0.30, 0.61, p < 0.001). The age that training commenced was harmful for both dorsal metacarpal disease (HR 1.17, 95% CI 1.07, 1.28, p < 0.001 and overall musculoskeletal injuries.). The use of non-ridden training modalities was protective for dorsal metacarpal disease (HR 0.89, 95% CI 0.81, 0.97, p = 0.008), but not musculoskeletal injuries overall. The male sex increased the hazard of DMD compared to females (HR 2.58, 95% CI 1.20, 5.56, p = 0.02), but not MSI overall. In summary, the hazard of musculoskeletal injury is greatest for 2-year-old horses that are born from uniparous mares, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited rest before their training preparation. The hazard of dorsal metacarpal disease is greatest for 2-year-old horses that are males, commence training at a later age, are in their first training preparation, have undertaken little high-speed exercise or had limited use of non-ridden training modalities. Close monitoring of these high-risk horses during their training program could substantially reduce the impact of MSI. Furthermore, an understanding of how training methodologies affect the hazard of MSI facilitates modification of training programs to mitigate the risk impact of injury. The strengths of this study include a large sample size, a well-defined study protocol and direct trainer interviews. The main limitation is the inherent susceptibility to survival bias.

Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 270
Author(s):  
Kylie L. Crawford ◽  
Anna Finnane ◽  
Clive J. C. Phillips ◽  
Ristan M. Greer ◽  
Solomon M. Woldeyohannes ◽  
...  

Musculoskeletal injuries (MSI) continue to affect Thoroughbred racehorses internationally. There is a strong interest in developing training and management strategies to reduce their impact, however, studies of risk factors report inconsistent findings. Furthermore, many injuries and fatalities occur during training rather than during racing, yet most studies report racing data only. By combining racing and training data a larger exposure to risk factors and a larger number of musculoskeletal injuries are captured and the true effect of risk factors may be more accurately represented. Furthermore, modifications to reduce the impact of MSI are more readily implemented at the training level. Our study aimed to: (1) determine the risk factors for musculoskeletal injuries and whether these are different for two-year-old and older horses and (2) determine whether risk factors vary with type of injury. This was performed by repeating analyses by age category and injury type. Data from 202 cases and 202 matched controls were collected through weekly interviews with trainers and analysed using conditional logistic regression. Increasing dam parity significantly reduced the odds of injury in horses of all age groups because of the effect in two-year-old horses (odds ratio (OR) 0.08; 95% confidence interval (CI) 0.02, 0.36; p < 0.001). Increasing total preparation length is associated with higher odds of injury in horses of all ages (OR 5.56; 95% CI 1.59, 19.46; p = 0.01), but particularly in two-year-old horses (OR 8.05; 95% CI 1.92, 33.76; p = 0.004). Increasing number of days exercised at a slow pace decreased the odds of injury in horses of all ages (OR 0.09; 95% CI 0.03, 0.28; p < 0.001). The distance travelled at three-quarter pace and above (faster than 13 m/s; 15 s/furlong; 800 m/min; 48 km/h) and the total distance travelled at a gallop (faster than 15 m/s; 13 s/furlong; 900 m/min; 55 km/h) in the past four weeks significantly affected the odds of injury. There was a non-linear association between high-speed exercise and injury whereby the odds of injury initially increased and subsequently decreased as accumulated high-speed exercise distance increased. None of the racing career and performance indices affected the odds of injury. We identified horses in this population that have particularly high odds of injury. Two-year-old horses from primiparous mares are at increased odds of injury, particularly dorsal metacarpal disease. Two-year-old horses that have had a total preparation length of between 10 and 14 weeks also have increased odds of injury. Horses of all ages that travelled a total distance of 2.4–3.8 km (12–19 furlongs) at a gallop in the last four weeks and horses three years and older that travelled 3.0–4.8 km (15–24 furlongs) at three-quarter pace and above also have increased odds of injury. We recommend that these horses should be monitored closely for impending signs of injury. Increasing the number of days worked at a slow pace may be more effective for preventing injury, if horses are perceived at a higher risk, than resting the horse altogether. Early identification of horses at increased risk and appropriate intervention could substantially reduce the impact of musculoskeletal injuries in Thoroughbred racehorses.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2091
Author(s):  
Kylie L. Crawford ◽  
Benjamin J. Ahern ◽  
Nigel R. Perkins ◽  
Clive J. C. Phillips ◽  
Anna Finnane

Despite over three decades of active research, musculoskeletal injuries (MSI) remain a global problem for the Thoroughbred (TB) racing industry. High-speed exercise history (HSEH) has been identified as an important risk factor for MSI. However, the nature of this relationship remains unclear, with an apparent protective effect of HSE against injury, before it becomes potentially harmful. Many MSI cases and fatalities occur during training rather than during racing, resulting in an underestimation of injury from studies focused on race day. The objective of this study was to examine the current evidence of the effect of combined training and racing HSEH on MSI in TB flat racehorses, through a systematic review and meta-analysis. A systematic search of the relevant literature was performed using PubMed®, Scopus®, Web of Science®, and Embase® online databases and the gray literature using sites containing “.edu” or “.edu.au”. Studies included in the review had explored seven different measures of HSE, including total career HSE distance, cumulative HSE distance in the 30 and 60 days before MSI, average HSE distance per day, per event and per 30 days, and the total number of HSE events. The total cumulative career HSE distance significantly affected the odds of MSI, with every 5-furlong increase, the odds of MSI increased by 2% (OR = 1.02; 95% CI 1.01, 1.03; p = 0.004). The average HSE distance per day also affected the odds of MSI, with every additional furlong increasing the odds of MSI by 73% (OR = 1.73; 95% CI 1.29, 2.31; p < 0.001). Other measures of HSE were not found to be consistently associated with risk of MSI, but these results should be interpreted with caution. Significant methodological limitations were identified and influence the comparability of studies. Standardizing the measures of HSE in studies of MSI, and describing training conditions in more detail, would support a more thorough investigation of the relationship between HSE and MSI. An improved understanding of this relationship is critical to mitigating the impact of MSI in the Thoroughbred racehorse.


Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 928
Author(s):  
Kylie L. Crawford ◽  
Anna Finnane ◽  
Ristan M. Greer ◽  
Clive J. C. Phillips ◽  
Emma L. Bishop ◽  
...  

Worldwide, musculoskeletal injuries remain a major problem for the Thoroughbred racing industry. There is a strong interest in developing training and management strategies to reduce the impact of musculoskeletal injuries, however, progress has been limited by studies reporting conflicting findings, and a limited understanding of the role of different training methods in preventing injury. There is little data on patterns of rest periods and exercise data and how these vary between trainers. This prospective study of two-year-old racehorses was conducted in Queensland, Australia and involved weekly personal structured interviews with 26 trainers over 56 weeks. Detailed daily exercise data for 535 horses providing 1258 training preparations and 7512 weeks at risk were collected. Trainers were categorised into three groups by the mean number of two-year-old horses that they had in work each week over the study duration: (1) Small stables with five or less, (2) Medium stables with 6 to 15 and (3) Large stables with greater than 15 horses in training. Differences between trainers with small, medium and large stable sizes were evaluated using linear regression, Kruskal–Wallis equality-of-populations rank test if linear models were mis-specified or Chi-squared tests for categorical variables. Significant differences were observed between trainers, with horses from larger stables accumulating a greater high-speed exercise volume (p < 0.001), attaining training milestones more frequently (p = 0.01) and taking less time to reach their training milestones (p = 0.001). This study provides detailed data to which training practices from other locations can be compared. Presenting actual training data rather than trainers’ estimation of a typical program provides a more accurate assessment of training practices. Understanding how training practices vary between regions improves comparability of studies investigating risk factors and is an important step towards reducing the impact of musculoskeletal injuries.


1997 ◽  
Vol 32 (1-2) ◽  
pp. 47-55 ◽  
Author(s):  
C.J. Bailey ◽  
S.W.J. Reid ◽  
D.R. Hodgson ◽  
C.J. Suann ◽  
R.J. Rose

2017 ◽  
Vol 52 (12) ◽  
pp. 1153-1160 ◽  
Author(s):  
Nicholas R. Heebner ◽  
John P. Abt ◽  
Mita Lovalekar ◽  
Kim Beals ◽  
Timothy C. Sell ◽  
...  

Context:  Seventy-seven percent of musculoskeletal injuries sustained by United States Army Special Forces Operators are preventable. Identification of predictive characteristics will promote the development of screening methods to augment injury-prevention programs. Objective:  To determine physical and performance characteristics that predict musculoskeletal injuries. Setting:  Clinical laboratory. Patients or Other Participants:  A total of 95 Operators (age = 32.7 ± 5.1 years, height = 179.8 ± 6.9 cm, mass = 89.9 ± 12.7 kg). Main Outcome Measure(s):  Laboratory testing consisted of body composition, aerobic and anaerobic capacity, upper and lower body strength and flexibility, balance, and biomechanical evaluation. Injury data were captured for 12 months after laboratory testing. Injury frequencies, cross-tabulations, and relative risks (RRs) were calculated to evaluate the relationships between physical characteristics and injury proportions. Between-groups differences (injured versus uninjured) were assessed using appropriate t tests or Mann-Whitney U tests. Results:  Less shoulder-retraction strength (RR = 1.741 [95% confidence interval = 1.003, 3.021]), knee-extension strength (RR = 2.029 [95% confidence interval = 1.011, 4.075]), and a smaller trunk extension : flexion ratio (RR = 0.533 [95% confidence interval = 0.341, 0.831]) were significant risk factors for injury. Group comparisons showed less trunk strength (extension: P = .036, flexion: P = .048) and smaller right vertical ground reaction forces during landing (P = .025) in injured Operators. Knee strength, aerobic capacity, and body mass index were less in the subgroup of spine-injured versus uninjured Operators (P values = .013−.036). Conclusions:  Knee-extension and shoulder-retraction strength were risk factors for musculoskeletal injury in Operators. Less trunk-flexion and -extension strength, higher body mass index, lower aerobic capacity, and increased ground reaction forces during landing were characteristics that may also contribute to musculoskeletal injury. Having 2 or more risk factors resulted in a greater injury proportion (χ2 = 13.512, P = .015); however, more research is needed. Athletic trainers working in the military or similar high-demand settings can use these data to augment screening and injury-prevention protocols.


Author(s):  
Elise M. Gane ◽  
Melanie L. Plinsinga ◽  
Charlotte L. Brakenridge ◽  
Esther J. Smits ◽  
Tammy Aplin ◽  
...  

Musculoskeletal injuries occur frequently after road traffic crashes (RTCs), and the effect on work participation is not fully understood. The primary aim of this review was to determine the impact of sustaining a musculoskeletal injury during an RTC on the rate of return to work (RTW), sick leave, and other work outcomes. The secondary aim was to determine factors associated with these work-related outcomes. An electronic search of relevant databases to identify observational studies related to work and employment, RTC, and musculoskeletal injuries was conducted. Where possible, outcome data were pooled by follow-up period to answer the primary aim. Fifty-three studies were included in this review, of which 28 were included in meta-analyses. The pooled rate of RTW was 70% at 1 month, 67% at 3 months, 76% at 6 months, 83% at 12 months, and 70% at 24 months. Twenty-seven percent of participants took some sick leave by one month follow-up, 13% by 3 months, 23% by 6 months, 36% by 12 months, and 22% by 24 months. Most of the factors identified as associated with work outcomes were health-related, with some evidence also for sociodemographic factors. While 70% of people with RTC-related musculoskeletal injury RTW shortly after accident, many still have not RTW two years later.


2019 ◽  
Author(s):  
◽  
Maxine-Lee Millar

AIM: The aim of this study was to determine the point and period prevalence of musculoskeletal injuries, the injury profile, associated risk factors and the impact of musculoskeletal injuries on trail runners who participated in selected trail races in the eThekwini municipality of KwaZulu-Natal. SUBJECTS: Participants from various trail running races volunteered to participate in the study after the completion of a trail race. METHODOLOGY: Participants were approached individually following the completion of a minimum of a 10 kilometre trail race. Each participant read a letter of information and signed an informed consent form before completing the questionnaire. A total of 197 completed informed consent and post-pilot questionnaires were collected and placed in separate sealed ballot boxes. A code was allocated to each questionnaire before data was captured on a spreadsheet for statistical analysis. RESULTS: In total, 145 questionnaires were statistically analysed. The results revealed that only ethnicity and how often the participant's trail ran per month were significant predictors of developing an injury. White participants were five times more likely to be injured compared to African participants and those who ran more than 10 times a month were 4.65 times more likely to be injured than those who ran less than five times a month. The most common past injuries sustained by trail runners was shown to be predominantly due to trauma, and were located in the knee, ankles and ITB regions. Current injuries were shown to be equally due to trauma and overuse, with predominant location being in the same anatomical regions as past injuries. CONCLUSION: The majority of the data collected was in line with the literature on running; however, most of those studies were done on road runners. The findings of this study were unique to trail runners in KwaZulu-Natal. Further studies are required on trail runners in other regions of South Africa to determine a clearer injury profile.


Animals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2046 ◽  
Author(s):  
Kylie L. Crawford ◽  
Anna Finnane ◽  
Ristan M. Greer ◽  
Clive J. C. Phillips ◽  
Solomon M. Woldeyohannes ◽  
...  

Musculoskeletal injuries (MSI) remain a concerning cause of racehorse morbidity and mortality with important ethical and welfare consequences. Previous research examining risk factors for MSI report inconsistent findings. Age is thought to affect MSI risk, but, to date, there have been no prospective studies comparing MSI in two-year-old versus older horses. This study aimed to: (1) determine the incidence of MSI for two-year-old and older horses, and whether this was affected by training track, season, or rainfall, and (2) determine the types of MSI affecting two-year-old and older horses, and whether horses trialled or raced after injury. A prospective survey was conducted with data collected through personal structured weekly interviews with participating trainers over a 13-month period. Data were analysed using Poisson regression. The incidence of MSI in the current study was low (0.6%). The incidence of MSI in two-year-old horses was higher than older horses (p < 0.001). Types of MSI varied between two-year-old and older horses (p < 0.001) and affected whether horses subsequently trailed or raced from 11 to 23 months after injury (p < 0.001). A larger proportion of two-year-old horses had dorsal metacarpal disease and traumatic lacerations. A smaller proportion of two-year-old horses had suspensory ligament desmitis, superficial digital flexor tendonitis, proximal sesamoid bone fractures, and fetlock joint injuries than older horses. Training track and rainfall did not affect MSI. The season affected MSI in two-year-old horses (p < 0.001) but not older horses. The major limitation was that trainers in this study were metropolitan (city) and our findings may not be generalisable to racehorses in regional (country) areas. Another significant limitation was the assumption that MSI was the reason for failure to trial or race after injury. In conclusion, the incidence of MSI was low in the current study and the types and the risk factors for MSI are different for two-year-old and older horses.


Sign in / Sign up

Export Citation Format

Share Document