scholarly journals Stability study of nasal powder formulation containing nanosized lamotrigine

2020 ◽  
Vol 90 (1) ◽  
pp. 27-31
Author(s):  
Péter Gieszinger ◽  
Gábor Katona ◽  
Piroska Szabó-Révész ◽  
Rita Ambrus

Drug administration through the nose offers great possibilities which have been discovered in the past few decades. Besides the most known local effect, systemic and central nervous system effect is also available, the administration is non-painful and the degradation effect of the gastrointestinal tract can be avoided. Amongst the nasal formulations, powders have become more popular as their stability is favorable compared to the liquid formulations and a higher dose can be administered in powder form. The quality insurance and stability of the products in the pharmaceutical field have gained considerable attention in the last decades. Due to this fact, the aim was to execute a long-term stability study of a previously developed, nanosized lamotrigine (LAM) containing nasal powder (NP) formulation. The results of the stability test showed that the NP formulation preserved its key properties (particle size, morphology, structure and in vitro drug release) after 6 months of storage.

2021 ◽  
Vol 15 (1) ◽  
pp. 2
Author(s):  
Cristina Martín-Sabroso ◽  
Mario Alonso-González ◽  
Ana Fernández-Carballido ◽  
Juan Aparicio-Blanco ◽  
Damián Córdoba-Díaz ◽  
...  

Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.


Author(s):  
LAKSHMI V. S. ◽  
REVATHY B. MENON ◽  
KEERTHANA RAJU ◽  
AISWARYA M. U. ◽  
SREEJA C. NAIR

Objective: To formulate and characterize Lorazepam loaded buccal patches using mucoadhesive, biodegradable, natural polymers-pectin (hydrophilic) and collagen (lipophilic) for treating epileptic seizures. Methods: Lorazepam loaded buccal patches were prepared by solvent casting method and were subjected to various Physico-chemical evaluation parameters to find the optimized buccal patch. The in vitro drug release study and ex vivo permeation study was carried out. The stability study and histopathological study of optimized Lorazepam loaded buccal patch was also carried out. Results: From in vitro drug release study, it was found that Lorazepam loaded buccal patch (B4) exhibited maximum drug release of 96.16 %±0.07 than other formulations at the end of 4 h, indicating an initial burst release followed by sustained release with release kinetics as Higuchi diffusion model. Based on the in vitro drug release, % drug content, % swelling index, folding endurance, B4 formulation was considered as optimised formulation and was further characterized. Ex vivo permeation study revealed that the cumulative amount of drug permeated from optimised Lorazepam loaded buccal patch (B4) was higher (3831.4±0.21µg/cm2) than marketed Midazolam buccal solution (1724±0.12 µg/cm2) and control drug solution (895.42±0.07 µg/cm2) with an enhancement ratio of 4.8. B4 formulation also showed a higher flux value (12.52±0.02µg/cm2/hr) compared to marketed formulation (5.732±0.01 µg/cm2) and control drug solution (2.563±0.03 µg/cm2) of P<0.05. The histopathological study using bovine buccal mucosa revealed that the B4 formulation is safe for buccal application. The stability study confirmed that B4 formulation is stable in both room and refrigeration conditions. Hence the formulated Lorazepam loaded buccal patch seems to be a promising carrier for the enhanced buccal delivery of Lorazepam in treating epileptic seizures. Conclusion: The formulated Lorazepam loaded collagen/pectin buccal patch was found to be an efficient and stable route for the buccal delivery of Lorazepam in treating acute epileptic seizures which could be further explored scientifically.


Foods ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 765 ◽  
Author(s):  
Alma Bockuviene ◽  
Jolanta Sereikaite

The application of β-carotene in food industry is limited due to its chemical instability. The drawback may be overcome by designing new delivery systems. The stability of β-carotene complexed with chitooligosaccharides by kneading, freeze-drying and sonication methods was investigated under various conditions. The first-order kinetics parameters of the reaction of β-carotene degradation were calculated. The complexation improved the stability of β-carotene at high temperatures and ensured its long-term stability in the dark at 4 °C and 24 °C, and in the light at 24 °C. In water solutions, the best characteristics were exhibited by the complexes prepared by freeze-drying and sonication methods. In the powder form, the complexes retained their colour for the period of the investigation of four months. The calculated total colour differences of the complexes were qualified as appreciable, detectable by ordinary people, but not large. Therefore, β-carotene-chitooligosaccharides complexes could be used as a new delivery system suitable for food fortification.


Author(s):  
SUDIPTA DAS ◽  
RIMI DEY

Objectives: A novel formulation was developed with glimepiride loaded trivalent ion Al+3 cross-linked and acetalated gellan gum microspheres. Methods: The glimepiride loaded microspheres were formulated using sodium alginate and gellan gum. Cross-linking agents used for the microspheres were aluminum chloride (AlCl3) and glutaraldehyde (GA). The evaluation processes of prepared microspheres were carried out by in-vitro release study, swelling index, microscopic analysis, and entrapment efficiency. Results: All the formulations show good entrapment efficiency and the maximum entrapment 84.6% was governed by the formulation (F3) cross-linked by AlCl3 and GA and their obtained mean particle size were 12.46±3.21 μm. Release profile of the formulations revealed the sustained design of the drug, particularly this formulation (F3), releasing approximately 40% over 4 h. Conclusions: From this experiment, it can be accustomed that F3 possesses higher standard formulation than the rest due to good release profile and entrapment efficiency. Therefore, the long term stability study is required for future development of this formulation.


Author(s):  
B. Veeraswami ◽  
V. M. K. Naveen

In this paper a comprehensive study of stability related, and evidence based best practices of Bio-analytical stability on Bendroflumethiazide drug samples are studied. The proposed approach is very significant and essential for the drugs development process address the specify the acceptancy, purity, efficacy, prediction of strength and quality of the drugs. The stability study constituents several methods like Bench-Top, Auto-sampler, Freeze-Thaw, Dry-extract, Wet-extract, Short-term, long-Term stability studies at relative intervals results the complete stability information about the drug under the proposed and validated method. There ported out comes of this methos shows this drug have good stability according to ICH guidelines.


2019 ◽  
Vol 9 (3) ◽  
pp. 51-59
Author(s):  
JESINDHA BEYATRICKS ◽  
, Dhananjaya

The aim of this study was to formulate and evaluate the oral fast-dissolving film of Vitamin B6 for the effective management of motion sickness and vomiting during pregnancy. Fast-dissolving films were prepared by the solvent-casting method using different polymers, HPMC-15 and Pullulan, along with Propylene glycol as a plasticizer. The Fourier-transform infrared study for the drug-polymer interaction was carried out. Evaluation of physical parameters such as physical appearance, surface texture, uniformity of weight, uniformity of strip thickness, surface pH, folding endurance, uniformity of drug content and percentage of moisture absorption were performed. Kinetic data analysis for the release study and the stability study were also performed. Results of uniformity of weight, thickness, folding endurance, surface pH, percentage drug content, tensile strength and percentage elongation of all the films were found to be satisfactory. The Fourier-transform infrared study indicated that there was no interaction between the drug and the polymers. The in-vitro drug release study showed that a better rate of drug release was achieved by formulations F4 and F8 compared with other formulations. The stability study did not show any significant difference in the external appearance, the drug content and the in-vitro drug release. In conclusion present study suggested that fast dissolving films has a better ability to cross the sublingual barrier at a faster rate, and hence the delivery system was found to be promising as it has the potential of overcoming the drawbacks associated with tablet formulations available in the market presently. Keywords: Fast-dissolving film, Vitamin B6, HPMC-15, Pullulan gum, Mango peel pectin, Crospovidone, solvent casting


Author(s):  
SUJAID THAYYILAKANDY ◽  
GAYATHRI P. S. ◽  
ARJUN K. K. ◽  
GAYATHRI KRISHNAKUMAR ◽  
SREEJA C. NAIR

Objective: To formulate and characterize. Phenobarbital sodium loaded sublingual patch using biodegradable, mucoadhesive, fast-dissolving natural polymer pullulan for immediate management of epileptic seizures. Methods: Phenobarbital sodium loaded sublingual patches were prepared by the solvent casting method and were subjected to various physicochemical evaluation parameters to find the optimized sublingual patch. The in vitro drug release study and kinetic model of the optimized formulation was also carried out. The stability study of the optimized Phenobarbital sodium loaded sublingual patch was also done. Results: From in vitro drug release study, it was found that Phenobarbital sodium loaded sublingual patch (S4) exhibited a maximum drug release of 96.24±1.27% at the end of 60 min compared to other formulations indicating a faster drug release from the formulation with release kinetics as Higuchi diffusion model. In fact, a notable release data was obtained between 0.5 to 8 min by all formulations, specifically S4 formulation (20.84±1.97% and 77.22±2.41% drug release at the end of 0.5 min and 8 min respectively) showed a better percentage release profile in comparison with other formulations. Such a trend is vital to deliver the drug at a faster rate to promote immediate effect for managing the fatal and complicated seizure. Considering the physicochemical property and in vitro drug release data, S4 formulation was regarded as an optimized one. The stability study also confirmed that S4 formulation is stable at refrigeration conditions. Conclusion: The formulated Phenobarbital sodium loaded sublingual patch is an effective drug delivery carrier which enables faster drug release to manage epileptic seizure.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 786
Author(s):  
Philip Chennell ◽  
Mouloud Yessaad ◽  
Florence Abd El Kader ◽  
Mireille Jouannet ◽  
Mathieu Wasiak ◽  
...  

Fungal keratitis is a sight-threatening disease for which amphotericin B eye drops is one of the front-line treatments. Unfortunately, there are currently no commercial forms available, and there is little data concerning the long-term stability of compounded formulations based on intravenous dosages forms. New formulations of amphotericin B ophthalmic solutions solubilised with γ-cyclodextrins have shown promising in-vitro results, but stability data is also lacking. The objective of this study was therefore to investigate the stability of a formulation of ready-to-use amphotericin B solubilised in 2-hydroxypropyl-γ-cyclodextrins (AB-HP-γ-CD), for 350 days. An amphotericin B deoxycholate (ABDC) formulation was used as a comparator. Analyses used were the following: visual inspection, turbidity, osmolality and pH measurements, amphotericin B quantification by a stability-indicating liquid chromatography method, breakdown product research, and sterility assay. AB-HP-γ-CD formulation showed signs of chemical instability (loss of amphotericin B) after 28 and 56 days at 25 °C and 5 °C. Adding an antioxidant (ascorbic acid) to the formulation did not improve stability. ABDC formulation showed signs of physical instability (increased turbidy and amphotericin B precipitation) after 28 days and 168 days at 25 °C and 5 °C. As such, AB-HP-γ-CD formulation does not provide long-term stability for ophthalmic amphotericin B solutions.


1979 ◽  
Vol 42 (04) ◽  
pp. 1135-1140 ◽  
Author(s):  
G I C Ingram

SummaryThe International Reference Preparation of human brain thromboplastin coded 67/40 has been thought to show evidence of instability. The evidence is discussed and is not thought to be strong; but it is suggested that it would be wise to replace 67/40 with a new preparation of human brain, both for this reason and because 67/40 is in a form (like Thrombotest) in which few workers seem to use human brain. A �plain� preparation would be more appropriate; and a freeze-dried sample of BCT is recommended as the successor preparation. The opportunity should be taken also to replace the corresponding ox and rabbit preparations. In the collaborative study which would be required it would then be desirable to test in parallel the three old and the three new preparations. The relative sensitivities of the old preparations could be compared with those found in earlier studies to obtain further evidence on the stability of 67/40; if stability were confirmed, the new preparations should be calibrated against it, but if not, the new human material should receive a calibration constant of 1.0 and the new ox and rabbit materials calibrated against that.The types of evidence available for monitoring the long-term stability of a thromboplastin are discussed.


2018 ◽  
Vol 8 (3) ◽  
pp. 36-41
Author(s):  
Diep Do Thi Hong ◽  
Duong Le Phuoc ◽  
Hoai Nguyen Thi ◽  
Serra Pier Andrea ◽  
Rocchitta Gaia

Background: The first biosensor was constructed more than fifty years ago. It was composed of the biorecognition element and transducer. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples Glutamate is important biochemicals involved in energetic metabolism and neurotransmission. Therefore, biosensors requires the development a new approach exhibiting high sensibility, good reproducibility and longterm stability. The first-generation enzyme biosensors play important role in monitoring neurotransmitter and determine small quantities of substances in complex matrices of the samples. The aims of this work: To find out which concentration of polyethylenimine (PEI) exhibiting the most high sensibility, good reproducibility and long-term stability. Methods: We designed and developed glutamate biosensor using different concentration of PEI ranging from 0% to 5% at Day 1 and Day 8. Results: After Glutamate biosensors in-vitro characterization, several PEI concentrations, ranging from 0.5% to 1% seem to be the best in terms of VMAX, the KM; while PEI content ranging from 0.5% to 1% resulted stable, PEI 1% displayed an excellent stability. Conclusions: In the result, PEI 1% perfomed high sensibility, good stability and blocking interference. Furthermore, we expect to develop and characterize an implantable biosensor capable of detecting glutamate, glucose in vivo. Key words: Glutamate biosensors, PEi (Polyethylenimine) enhances glutamate oxidase, glutamate oxidase biosensors


Sign in / Sign up

Export Citation Format

Share Document