scholarly journals Development of a Novel Miniaturized Electromagnetic Actuator for a Modular Serial Manipulator

Actuators ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 14
Author(s):  
Nader A. Mansour ◽  
Buhyun Shin ◽  
Bongjo Ryu ◽  
Youngshik Kim

This paper presents a novel miniaturized and modular dual-axis Electromagnetic Actuator (EMA). It mainly consists of two electromagnetic coils in an orthogonal orientation with a permanent magnet fixed on a free moving frame that rotates around two axes/joints. By actuating either of the coils, the free moving frame rotates around the corresponding axis. Simulations and experimental analyses are conducted in order to characterize the performance of our EMA. Thus, our actuator achieves a torque of 100 mNm at simulation and 80 mNm through experimentation for the same applied current. Additionally, it can achieve a rotation of 10∘ (≈0.2 rad), according to simulations and experimental work. Because of modularity, multiple units of our EMA can be connected together in different configuration to serve in several applications. As an example application, we used a pair of our EMA in order to generate a miniaturized 4-DOF robotic manipulator. This manipulator demonstrates the advantages of light weight, small size, and a high level of manipulability. Kinematic analyses and experimental work are performed in order to validate our manipulator and to prove the concept of our proposed EMA. Through this experiment, we applied an open-loop controller on our EMAs, so that the end-effector of our manipulator can track a predefined circular trajectory. The movement of the end-effector is detected while using image processing techniques. Although we used an open-loop controller, our manipulator is still able to track the trajectory with moderate errors.

2002 ◽  
Vol 21 (10-11) ◽  
pp. 849-859 ◽  
Author(s):  
Kenneth A. Mcisaac ◽  
James P. Ostrowski

In this paper, we describe experimental work using an underwater, biomimetic, eel-like robot to verify a simplified dynamic model and open-loop control routines. We compare experimental results to previous analytically derived, but approximate expressions for proposed gaits for forward/backward swimming, circular swimming, sideways swimming and turning in place. We have developed a five-link, underwater eel-like robot, focusing on modularity, reliability and rapid prototyping, to verify our theoretical predictions. Results from open-loop experiments performed with this robot in an aquatic environment using an off-line vision system for position sensing show good agreement with theory.


2022 ◽  
pp. 1-22
Author(s):  
Maarten Coëgnarts ◽  
Mario Slugan

Abstract This paper adopts an embodied cognitive perspective to review the significance of dynamic patterns in the visual expression of meaning. Drawing upon the work of Rudolf Arnheim we first show how perceptual dynamics of inanimate objects might be extended in order to structure abstract meaning in fixed images such as paintings. Second, we evaluate existing experimental work that shows how simple kinematic structures within a stationary frame might embody such high-level properties as perceptual causality and animacy. Third and last, we take inspiration from these experiments to shed light on the expressiveness of dynamic patterns that unfold once the frame itself becomes a mobile entity (i.e., camera movement). In the latter case we will also present a filmic case study, showing how filmmakers might resort to these dynamic patterns so as to embody a film’s story content, while simultaneously offering a further avenue for film scholars to deepen their engagement with the experimental method.


Author(s):  
V. Santhi ◽  
B. K. Tripathy

The image quality enhancement process is considered as one of the basic requirement for high-level image processing techniques that demand good quality in images. High-level image processing techniques include feature extraction, morphological processing, pattern recognition, automation engineering, and many more. Many classical enhancement methods are available for enhancing the quality of images and they can be carried out either in spatial domain or in frequency domain. But in real time applications, the quality enhancement process carried out by classical approaches may not serve the purpose. It is required to combine the concept of computational intelligence with the classical approaches to meet the requirements of real-time applications. In recent days, Particle Swarm Optimization (PSO) technique is considered one of the new approaches in optimization techniques and it is used extensively in image processing and pattern recognition applications. In this chapter, image enhancement is considered an optimization problem, and different methods to solve it through PSO are discussed in detail.


Author(s):  
Zhen Huang ◽  
Si J. Zhu

This paper presents the kinematic analyses of a 5-DOF 3-RCRR parallel mechanism. The end-effector of this mechanism can rotate round rotation center and one reference point on it can translate in a plane parallels to the base platform. Since the traditional Kutzbach-Gru¨bler formula is not valid for this mechanism, the modified Kutzbach-Gru¨bler formula and screw theory are used in the mobility analysis. The Duffy’s spherical analytic theory is used in forward/reverse position analyses. In forward/reverse velocity/acceleration analyses, virtual mechanism principle is used to build a virtual parallel mechanism (3-PvRCRR), which is equivalent to the initial mechanism (3-RCRR) on kinematics if all rates of virtual pairs (Pv) are set to be zero. At the end, some kinematics curves are presented with a numerical example.


Author(s):  
Constantinos Mavroidis ◽  
Munshi Alam ◽  
Eric Lee

Abstract This paper studies the geometric design of spatial two degrees of freedom, open loop robot manipulators with revolute joints that perform tasks, which require the positioning of the end-effector in three spatial locations. This research is important in situations where a robotic manipulator or mechanism with a small number of joint degrees of freedom is designed to perform higher degree of freedom end-effector tasks. The loop-closure geometric equations provide eighteen design equations in eighteen unknowns. Polynomial Elimination techniques are used to solve these equations and obtain the manipulator Denavit and Hartenberg parameters. A sixth order polynomial is obtained in one of the design parameters. Only two of the six roots of the polynomial are real and they correspond to two different robot manipulators that can reach the desired end-effector poses.


2009 ◽  
Vol 66 (6) ◽  
pp. 1023-1028 ◽  
Author(s):  
James H. Churnside ◽  
Eirik Tenningen ◽  
James J. Wilson

Abstract Churnside, J. H., Tenningen, E., and Wilson, J. J. 2009. Comparison of data-processing algorithms for the lidar detection of mackerel in the Norwegian Sea. – ICES Journal of Marine Science, 66: 1023–1028. A broad-scale lidar survey was conducted in the Norwegian Sea in summer 2002. Since then, various data-processing techniques have been developed, including manual identification of fish schools, multiscale median filtering, and curve fitting of the lidar profiles. In the automated techniques, applying a threshold to the data, as carrried out already to eliminate plankton scattering, has been demonstrated previously to improve the correlation between lidar and acoustic data. We applied these techniques to the lidar data of the 2002 survey and compared the results with those of a mackerel (Scomber scombrus) survey done by FV “Endre Dyrøy” and FV “Trønderbas” during the same period. Despite a high level of variability in both lidar and trawl data, the broad-scale distribution of fish inferred from the lidar agreed with that of mackerel caught by the FV “Endre Dyrøy”. This agreement was obtained using both manual and automated processing of the lidar data. This work is the first comparison of concurrent lidar and trawl surveys, and it demonstrates the utility of airborne lidar for mackerel studies.


1999 ◽  
Vol 121 (1) ◽  
pp. 32-38 ◽  
Author(s):  
F. C. Park ◽  
J. W. Kim

This paper presents a coordinate-invariant differential geometric analysis of kinematic singularities for closed kinematic chains containing both active and passive joints. Using the geometric framework developed in Park and Kim (1996) for closed chain manipulability analysis, we classify closed chain singularities into three basic types: (i) those corresponding to singular points of the joint configuration space (configuration space singularities), (ii) those induced by the choice of actuated joints (actuator singularities), and (iii) those configurations in which the end-effector loses one or more degrees of freedom of available motion (end-effector singularities). The proposed geometric classification provides a high-level taxonomy for mechanism singularities that is independent of the choice of local coordinates used to describe the kinematics, and includes mechanisms that have more actuators than kinematic degrees of freedom.


Author(s):  
Mohammed Al-Momin ◽  
Ammar Almomin

<span lang="EN-US">The conventional method for detecting blood abnormality is time consuming and lacks the high level of accuracy. In this paper a MATLAB based solution has been suggested to tackle the problem of time consumption and accuracy. Three types of blood abnormality have been covered here, namely, anemia which is characterized by low count of red blood cells (RBCs), Leukemia which is depicted by increasing the number of white blood cells (WBCs), and sickle cell blood disorder which is caused by a deformation in the shape of red cells. The algorithm has been tested on different images of blood smears and noticed to give an acceptable level of accuracy. Image processing techniques has been used here to detect the different types of blood constituents. Unlike many other researches, this research includes the blood sickling disorder which is epidemic in certain regions of the world, and offers a more accuracy than other algorithms through the use of detaching overlapped cells strategy.</span>


2021 ◽  
Vol 7 (2(42)) ◽  
pp. 9-15
Author(s):  
Ekaterina Igorevna Blauvelt

The article describes the concepts of «anxiety» and «school anxiety»: interpretation and development in psychological science. This article studies the reasons and factors of anxiety of school anxiety in teenagers. The relevance of this topic caused by an increasing number of teenagers who get increasing anxiety and experiencing negative emotions. This article identifies the level of school and personal anxiety of teenagers (5th-7th grade) and discusses possible causes of anxiety in this age group. The article presents the results of the work of a school psychologist aimed to identify the level of school anxiety: results of the ascertaining experiment, forming experiment, individual and group consultations with elements of psychological theater, aimed at reducing the high level of anxiety of teenagers. The article describes productive options for teacher-student cooperation aimed to decrease the level of anxiety among teenagers. The article explains the recommendations for formation a psychologically safe educational environment.


Sign in / Sign up

Export Citation Format

Share Document