scholarly journals Novel Strategy of Adaptive Predictive Control Based on a MIMO-ARX Model

Actuators ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 21
Author(s):  
Alejandro Piñón ◽  
Antonio Favela-Contreras ◽  
Francisco Beltran-Carbajal ◽  
Camilo Lozoya ◽  
Graciano Dieck-Assad

Many industrial processes include MIMO (multiple-input, multiple-output) systems that are difficult to control by standard commercial controllers. This paper describes a MIMO case of a class of SISO-APC (single-input, single-output adaptive predictive controller) based upon an ARX (autoregressive with exogenous variable) model. This class of SISO-APC based on ARX models has been successfully and extensively used in many industrial applications. This approach aims to minimize the barriers between the theory of predictive adaptive control and its application in the industrial environment. The proposed MIMO-APC (MIMO adaptive predictive controller) performance is validated with two simulated processes: a quadrotor drone and the quadruple tank process. In the first experiment the proposed MIMO APC shows ISE-IAE-ITAE performance indices improvements of up to 25%, 25.4% and 38.9%, respectively. For the quadruple tank process the water levels in the lower tanks follow closely the set points, with the exception of a 13% overshoot in tank 1 for the minimum phase behavior response. The controller responses show significant performance improvements when compared with previously published MIMO control strategies.

2020 ◽  
Author(s):  
Ibrahim K. Mohammed

Proportional Integral Derivative (PID) is the most popular controller that is commonly used in wide industrial applications due to its simplicity to realize and performance characteristics. This technique can be successfully applied to control the behavior of single-input single-output (SISO) systems. Extending the using of PID controller for complex dynamical systems has attracted the attention of control engineers. In the last decade, hybrid control strategies are developed by researchers using conventional PID controllers with other controller techniques such as Linear Quadratic Regulator (LQR) controllers. The strategy of the hybrid controller is based on the idea that the parameters of the PID controller are calculated using gain elements of LQR optimal controller. This chapter focuses on design and simulation a hybrid LQR-PID controller used to stabilize elevation, pitch and travel axes of helicopter system. An improvement in the performance of the hybrid LQR-PID controller is achieved by using Genetic Algorithm (GA) which, is adopted to obtain best values of gain parameters for LQR-PID controller.


2007 ◽  
Vol 4 (2) ◽  
pp. 318-329
Author(s):  
Baghdad Science Journal

This paper presents a newly developed method with new algorithms to find the numerical solution of nth-order state-space equations (SSE) of linear continuous-time control system by using block method. The algorithms have been written in Matlab language. The state-space equation is the modern representation to the analysis of continuous-time system. It was treated numerically to the single-input-single-output (SISO) systems as well as multiple-input-multiple-output (MIMO) systems by using fourth-order-six-steps block method. We show that it is possible to find the output values of the state-space method using block method. Comparison between the numerical and exact results has been given for some numerical examples for solving different types of state-space equations using block method for conciliated the accuracy of the results of this method.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Zedong Xie ◽  
Xihong Chen ◽  
Xiaopeng Liu ◽  
Yu Zhao

The impact of intersymbol interference (ISI) on single-carrier frequency-domain equalization with multiple input multiple output (MIMO-SC-FDE) troposcatter communication systems is severe. Most of the channel equalization methods fail to solve it completely. In this paper, given the disadvantages of the noise-predictive (NP) MMSE-based and the residual intersymbol interference cancellation (RISIC) equalization in the single input single output (SISO) system, we focus on the combination of both equalization schemes mentioned above. After extending both of them into MIMO system for the first time, we introduce a novel MMSE-NP-RISIC equalization method for MIMO-SC-FDE troposcatter communication systems. Analysis and simulation results validate the performance of the proposed method in time-varying frequency-selective troposcatter channel at an acceptable computational complexity cost.


2021 ◽  
Author(s):  
Alex Gimondi ◽  
Matteo Corno ◽  
Sergio M. Savaresi

Abstract Electronic stability control (ESC) has become a fundamental safety feature for passenger cars. Commonly employed ESCs are based on differential braking. Nevertheless, electric vehicles’ growth, particularly those featuring an over-actuated configuration with individual wheel motors, allows for maintaining driveability without slowing down the vehicle. Standard control strategies are based on yaw rate tracking. The reference signal is model-based and needs precise knowledge of the friction coefficient. To increase the system robustness, more sophisticated approaches that include vehicle sideslip are introduced. Still, it is unclear how the two signals have to be weighted, and rarely proposed controllers have been experimentally validated. In this paper, we present a mixed sideslip and yaw rate stability controller. The mixed approach allows to address the control design as a single-input single-output problem simplifying the tuning process. Furthermore, we explain the rationale behind the choice of the weighting parameter. Eventually, the proposed ESC is validated following EU regulation in simulation and with an experimental vehicle on dry asphalt and snow. The results obtained in all the performed tests demonstrate that the proposed control strategy is robust and effective. The mixed approach is able to halve the sideslip in critical conditions with respect to a pure yaw rate approach.


2020 ◽  
Vol 10 (21) ◽  
pp. 7492
Author(s):  
Daniel Fernandes ◽  
Francisco Cercas ◽  
Rui Dinis ◽  
Pedro Sebastião

The demand for ubiquitous telecommunications services forces operators to have a special concern about signal quality and the coverage area they offer to their customers. This was usually checked by using suitable propagation models for Single Input Single Output (SISO) systems, which are no longer the case for new and future mobile generations, such as 5G and beyond. To guarantee good signal quality coverage, operators started to replace these models with Multiple Input Multiple Output (MIMO) ones. To achieve the best results, these models are usually calibrated with Drive Test (DT) measures; however, the DTs available for MIMO propagation models are sparse, in contrast to SISO ones. The main contribution presented in this paper is a methodology to extend the propagation models of SISO systems so they can be applied in MIMO sytems with Single-Carrier and Frequency-Domain Equalization (SC-FDE), while still using DTs acquired for SISO systems. This paper presents the impact on Bit Error Rate (BER) performance and its coverage area resulting from the application of our proposed method. We consider a MIMO SC-FDE system with an Iterative Block Decision Feedback Equalization (IB-DFE) receiver and we present the improvement expressions for the BER that we illustrate with some simulations.


Machines ◽  
2019 ◽  
Vol 7 (1) ◽  
pp. 10 ◽  
Author(s):  
Alessandro Palmieri ◽  
Renato Procopio ◽  
Andrea Bonfiglio ◽  
Massimo Brignone ◽  
Marco Invernizzi ◽  
...  

Model-based control techniques have been gaining more and more interest these days. These complex control systems are mostly based on theories, such as feedback linearization, model predictive control, adaptive and robust control. In this paper the latter approach is investigated, in particular, sliding mode (SM) control is analyzed. While several works on the description and application of SM control on single-input single-output systems can easily be found, its application on multi-input multi-output systems is not examined in depth at the same level. Hence, this work aims at formalizing some theoretical complements about the necessary conditions for the feasibility of the SM control for multi-input-multi-output systems. Furthermore, in order to obtain the desired performance from the control system, a method for parameter tuning is proposed in the particular case in which the relative degree of the controlled channels is equal to one. Finally, a simple control problem example is shown with the aim of stressing the benefits derived from the application of the theoretical complements described here.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
R. Carrasco-Alvarez ◽  
R. Carreón-Villal ◽  
J. Vázquez Castillo ◽  
J. Ortegón Aguilar ◽  
O. Longoria-Gandara ◽  
...  

A methodology for implementing a triply selective multiple-input multiple-output (MIMO) simulator based on graphics processing units (GPUs) is presented. The resulting simulator is based on the implementation of multiple double-selective single-input single-output (SISO) channel generators, where the multiple inputs and the multiple received signals have been transformed in order to supply the corresponding space correlation of the channel under consideration. A direct consequence of this approach is the flexibility provided, which allows different propagation statistics to each SISO channel to be specified and thus more complex environments to be replicated. It is shown that under some specific constraints, the statistics of the triply selective MIMO simulator are the same as those reported in the state of art. Simulation results show the computational time improvement achieved, up to 650-fold for an 8 × 8 MIMO channel simulator when compared with sequential implementations. In addition to the computational improvement, the proposed simulator offers flexibility for testing a variety of scenarios in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) systems.


2010 ◽  
Vol 459 ◽  
pp. 221-233 ◽  
Author(s):  
Kou Yamada ◽  
Nghia Thi Mai ◽  
Yoshinori Ando ◽  
Takaaki Hagiwara ◽  
Iwanori Murakami ◽  
...  

The modified Smith predictor is well known as an effective time-delay compensator for a plant with large time-delays, and several papers on the modified Smith predictor have been published. The parameterization of all stabilizing modified Smith predictors for single-input/single-output time-delay plants is obtained by Yamada et al. However, they do not examine the parameterization of all stabilizing modified Smith predictors for multiple-input/multiple-output time-delay plants. The purpose of this paper is to expand the result by Yamada et al. and to propose the parameterization of all stabilizing modified Smith predictors for multiple-input/multiple-output time-delay plants. Control characteristics of the control system using obtained parameterization of all stabilizing modified Smith predictors are also given. Finally, a numerical example is illustrated to show the effectiveness of proposed parameterization of all stabilizing modified Smith predictors.


Author(s):  
Oscar Pena ◽  
Michael Leamy

This study explores optimal control and sizing of a recently introduced efficient architecture for hydraulic actuation. Previous work established a physical model of the architecture posed as a single-input single-output (SISO) system in which the ratio of two hydraulic pump/motor swash plate angles served as the control input for regulating actuation speed. The architecture was heuristically sized and controlled within the context of a hydraulic elevator. High-fidelity simulations of the system demonstrated an upwards of 75% decrease in energy consumption compared to a throttling architecture. Monte Carlo simulations are now used to achieve optimal sizing of the system. Several uniformly random points in the design space are chosen and evaluated using Dynamic Programming, which provides both a deterministic and optimal value for energy efficiency of the system. Aggregation of evaluated points reveals a region within the three-dimensional space wherein the architecture is optimally sized for efficiency. Dynamic Programming is then used to inform efficient rule-based control strategies. Control techniques learned from Dynamic Programming suggest efficient operation of the system results through the maximization of pump/motor 1 displacement and the use of the auxiliary electric motor during retraction of the hydraulic cylinder. Dynamic Programming informed system achieved a 61% level of optimality. Additionaly, it exhibited a 21% improvement over a heuristically sized and controlled version. It is anticipated that optimal control and sizing guidelines presented are applicable within the context of other hydraulic actuation technologies for which the studied architecture may be used.


Author(s):  
G G Lisini ◽  
P Toni ◽  
M C Valigi

In steelworks the demand for a higher product quality level has improved the rolling mill process by means of a proper work roll speed control system. Firstly this paper proposes a lumped-parameter hot-rolling mill model. The rolling mill examined is reversible and equipped with an independent speed control system for each work roll (two single-input single-output systems). Therefore, the same revolution speed, essential for a high-quality process, can only be ensured by equal set point values. Nevertheless, during the process, different disturbance load torques cause speed differences and, even if they are not noticeable, rolled section defects cannot be avoided. The second part of the paper shows that it is possible to design a proper H∞ controller, to change the two independent control systems into a more complex multiple-input multiple-output system that will obtain decidedly better performances. Simulation examples have shown improvements.


Sign in / Sign up

Export Citation Format

Share Document